Displaying publications 1 - 20 of 216 in total

Abstract:
Sort:
  1. Tiekink ER, Zukerman-Schpector J
    Chem Commun (Camb), 2011 Jun 21;47(23):6623-5.
    PMID: 21455512 DOI: 10.1039/c1cc11173f
    Crystal structures of transition and main group element 1,1-dithiolates are shown to be partially sustained by C-H···π(chelate) interactions. For the planar binary bisdithiocarbamates, C-H···π(MS(2)C) interactions lead to aggregation patterns ranging from a 0-D four molecule aggregate to a 3-D architecture but with the majority of structures featuring 1-D or 2-D supramolecular assemblies.
    Matched MeSH terms: Crystallography, X-Ray
  2. Usman A, Razak IA, Fun HK, Chantrapromma S, Zhang Y, Xu JH
    Acta Crystallogr C, 2002 Apr;58(Pt 4):O239-41.
    PMID: 11932554
    The crystal of the title compound, C(20)H(17)NO(4), which was used for collecting intensity data was twinned. Each of the two crystallographically independent molecules in the asymmetric unit has a planar indole moiety perpendicular to a planar oxopropyl moiety. The distribution of the bonds at the central C atom joining the oxopropyl, phenyl and indole substituents is also planar. The packing is stabilized by intermolecular C-H* * *O interactions, as well as by dipole-dipole and van der Waals interactions.
    Matched MeSH terms: Crystallography
  3. Usman A, Chantrapromma S, Fun HK
    Acta Crystallogr C, 2002 Jan;58(Pt 1):m45-7.
    PMID: 11781470
    The title compound, bis(2,4-dinitrophenolato-kappa2O,O')(1,4,7,10,13,16-hexaoxadecane-kappa6O)barium(II), [Ba(C6H3N2O5)2(C12H24O6)], is a 1:1 complex of barium(II)-2,4-dinitrophenolate and 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6). Its structure is located on a crystallographic inversion centre. The temperature dependence of the crystal structure has been studied. The monoclinic beta angle of the P2(1)/n space group increases with increasing temperature. The packing structure of the complex is stabilized by intermolecular C-H...O interactions.
    Matched MeSH terms: Crystallography
  4. Ng SW, Yang Farina AA, Othman AH, Baba I, Sivakumar K, Fun HK
    Acta Crystallogr C, 2000 Mar 15;56(Pt 3):E84-5.
    PMID: 15263206
    The title compound, [Sn(CH(3))(2)(C(5)H(10)NO(2)S(2))(2)], has crystallographic mirror symmetry (C-Sn-C on mirror plane) and the coordination polyhedron around the Sn atom is a tetrahedron [C-Sn-C 139.3 (2) degrees and S-Sn-S 82.3 (1) degrees ] distorted towards a skew-trapezoidal bipyramid owing to an intramolecular Sn.S contact [3.0427 (6) A]. The molecules are linked into a linear chain by intermolecular O-H.O hydrogen bonds [O.O 2.646 (3) A].
    Matched MeSH terms: Crystallography
  5. Mohamad R, Awang N, Kamaludin NF, Jotani MM, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2017 Feb 01;73(Pt 2):260-265.
    PMID: 28217355 DOI: 10.1107/S2056989017001098
    The complete mol-ecule of the title compound, [Sn(C4H9)2(C5H10NOS2)2], is generated by a crystallographic mirror plane, with the SnIV atom and the two inner methyl-ene C atoms of the butyl ligands lying on the mirror plane; statistical disorder is noted in the two terminal ethyl groups, which deviate from mirror symmetry. The di-thio-carbamate ligand coordinates to the metal atom in an asymmetric mode with the resulting C2S4 donor set defining a skew trapezoidal bipyramidal geometry; the n-butyl groups are disposed to lie over the longer Sn-S bonds. Supra-molecular chains aligned along the a-axis direction and sustained by methyl-ene-C-H⋯S(weakly coordinating) inter-actions feature in the mol-ecular packing. A Hirshfeld surface analysis reveals the dominance of H⋯H contacts in the crystal.
    Matched MeSH terms: Crystallography
  6. Kwong HC, Sim A, Chidan Kumar CS, Then LY, Win YF, Quah CK, et al.
    Acta Crystallogr E Crystallogr Commun, 2017 Dec 01;73(Pt 12):1812-1816.
    PMID: 29250392 DOI: 10.1107/S205698901701564X
    The asymmetric unit of the title compound, C24H14F4O2, comprises of one and a half mol-ecules; the half-mol-ecule is completed by crystallographic inversion symmetry. In the crystal, mol-ecules are linked into a three-dimensional network by C-H⋯F and C-H⋯O hydrogen bonds. Some of the C-H⋯F links are unusually short (< 2.20 Å). Hirshfeld surface analyses (dnorm surfaces and two-dimensional fingerprint plots) for the title compound are presented and discussed.
    Matched MeSH terms: Crystallography
  7. Yusof ENM, Nasri NM, Ravoof TBSA, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2019 Jun 01;75(Pt 6):794-799.
    PMID: 31391968 DOI: 10.1107/S2056989019006145
    The title CuII complex, [Cu(C13H11N2OS2)2], features a trans-N2S2 donor set as a result of the CuII atom being located on a crystallographic centre of inversion and being coordinated by thiol-ate-S and imine-N atoms derived from two di-thio-carbazate anions. The resulting geometry is distorted square-planar. In the crystal, π(chelate ring)-π(fur-yl) [inter-centroid separation = 3.6950 (14) Å and angle of inclination = 5.33 (13)°] and phenyl-C-H⋯π(phen-yl) inter-actions sustain supra-molecular layers lying parallel to (02). The most prominent inter-actions between layers, as confirmed by an analysis of the calculated Hirshfeld surface, are phenyl-H⋯H(phen-yl) contacts. Indications for Cu⋯Cg(fur-yl) contacts (Cu⋯Cg = 3.74 Å) were also found. Inter-action energy calculations suggest the contacts between mol-ecules are largely dispersive in nature.
    Matched MeSH terms: Crystallography
  8. Bindya S, Chidan Kumar CS, Naveen S, Siddaraju BP, Quah CK, Raihan MA
    Acta Crystallogr E Crystallogr Commun, 2019 Feb 01;75(Pt 2):264-267.
    PMID: 30800464 DOI: 10.1107/S205698901900104X
    In the title chalcone derivative, C15H9BrCl2O, the aryl rings are inclined to each by 14.49 (17)°, and the configuration about the C=C bond is E. There is a short intra-molecular C-H⋯Cl contact present resulting in the formation of an S(6) ring motif. In the crystal, the shortest inter-molecular contacts are Cl⋯O contacts [3.173 (3) Å] that link the mol-ecules to form a 21 helix propagating along the b-axis direction. The helices stack up the short crystallographic a axis, and are linked by offset π-π inter-actions [inter-centroid distance = 3.983 (1) Å], forming layers lying parallel to the ab plane. A qu-anti-fication of the inter-molecular contacts in the crystal were estimated using Hirshfeld surface analysis and two-dimensional fingerprint plots.
    Matched MeSH terms: Crystallography
  9. Ridha NJ, Umar AA, Alosfur F, Jumali MH, Salleh MM
    J Nanosci Nanotechnol, 2013 Apr;13(4):2667-74.
    PMID: 23763142
    Porous ZnO nanostructures have become the subject of research interest--due to their special structures with high surface to volume ratio that may produce peculiar properties for use in optoelectronics, sensing and catalysis applications. A microwave-assisted hydrothermal method has been used for effecting the formation of porous nanostructure of metaloxide materials, such as CoO and SnO2, in solution. Here, by adopting the unique performance of a microwave-assisted-hydrothermal method, we realized the formation of highly porous ZnO nanostructures directly on the substrate surface, instead of in solution. The effects of the ambient reaction conditions and the microwave power on the structural growth of the ZnO nanostructures were studied in detail. Two different ambient reaction conditions, namely refluxed and isolated in autoclave systems, were used in this work. Porous ZnO (PZO) nanostructures with networked-nanoflakes morphology is the typical result for this approach. It was found that the morphology of the ZnO nanostructures was strongly depended on the ambient conditions of the reaction; the isolated-autoclave system may produce reasonably high porous ZnO that is constituted by vertically oriented grainy-flakes structures, whereas the refluxed system produced solid vertically-oriented flake structures. The microwave power did not influence the structural growth of the ZnO. It was also found that both the ambient reaction conditions and the microwave power used influenced the crystallographic orientation of the PZO. For instance, PZO with dominant (002) Bragg plane could be obtained by using refluxed system, whereas PZO with dominant (101) plane could be realized if using isolated system. For the case of microwave power, the crystallographic orientation of PZO prepared using both systems changed from dominant (002) to (101) planes if the power was increased. The mechanism for the formation of porous ZnO nanostructures using the present approach is proposed. The ZnO nanostructures prepared using the present method should find an extensive use in currently existing application due to its property of reasonably high porosity.
    Matched MeSH terms: Crystallography
  10. Kok KY, Ng IK
    The effects of Fe buffer layer on the microstructures and GMR property of magnetron sputtered Co/Cu multilayers were studied. The main focus was to systematically identify the types of microstructural features present in the multilayers and to determine their characteristic length scales via qualitative and quantitative microstructural characterisation techniques. Both diffraction and imaging techniques were used to extract useful information on layering and crystallographic structures of the materials. This has provided an insight into the structure-property relationship of the materials system. Co/Cu multilayered samples grown with iron buffer layers were found to display better structural coherency and layering quality as compared to those grown without the iron buffer layers. The high GMR effect as demonstrated by these multilayers was associated with highly correlated interface profiles, sharp columnar grain boundaries and high degree of lateral coherency in columnar grain growth.
    Matched MeSH terms: Crystallography
  11. Zakaria MB, Saito I, Yao XK, Wang RJ, Matsuura T
    Planta Med, 1989 Oct;55(5):477-8.
    PMID: 17262463
    Fibraurin, chasmanthin, and palmarin were isolated from the stems of FIBRAUREA CHLOROLEUCA, Fam. Menispermaceae. The structure of the minor constituent, palmarin, was determined by X-ray crystallographic analysis.
    Matched MeSH terms: Crystallography, X-Ray
  12. Tang SY, Tan CH, Sim KS, Yong KT, Lim KH, Low YY, et al.
    Phytochemistry, 2023 Apr;208:113587.
    PMID: 36646163 DOI: 10.1016/j.phytochem.2023.113587
    Eight undescribed iboga alkaloids, polyneurines A-H, were isolated from the bark of Tabernaemontana polyneura. The structures of these alkaloids were established by interpretation of the MS and NMR data, while the configurations were determined using GIAO NMR calculations and DP4+ probability analysis, TDDFT-ECD method, or X-ray diffraction analysis. Polyneurine A possesses a γ-lactone unit embedded within the iboga skeleton, while polyneurines D and E incorporate a formylmethyl moiety at C-3 of the iboga skeleton. Biosynthetic pathways towards the formation of polyneurines A, C, D, and E were proposed.
    Matched MeSH terms: Crystallography, X-Ray
  13. Mohamad Aris SN, Thean Chor AL, Mohamad Ali MS, Basri M, Salleh AB, Raja Abd Rahman RN
    Biomed Res Int, 2014;2014:904381.
    PMID: 24516857 DOI: 10.1155/2014/904381
    Three-dimensional structure of thermostable lipase is much sought after nowadays as it is important for industrial application mainly found in the food, detergent, and pharmaceutical sectors. Crystallization utilizing the counter diffusion method in space was performed with the aim to obtain high resolution diffracting crystals with better internal order to improve the accuracy of the structure. Thermostable T1 lipase enzyme has been crystallized in laboratory on earth and also under microgravity condition aboard Progress spacecraft to the ISS in collaboration with JAXA (Japanese Aerospace Exploration Agency). This study is conducted with the aims of improving crystal packing and structure resolution. The diffraction data set for ground grown crystal was collected to 1.3 Å resolution and belonged to monoclinic C2 space group with unit cell parameters a = 117.40 Å, b = 80.95 Å, and c = 99.81 Å, whereas the diffraction data set for space grown crystal was collected to 1.1 Å resolution and belonged to monoclinic C2 space group with unit cell parameters a = 117.31 Å, b = 80.85 Å, and c = 99.81 Å. The major difference between the two crystal growth systems is the lack of convection and sedimentation in microgravity environment resulted in the growth of much higher quality crystals of T1 lipase.
    Matched MeSH terms: Crystallography/methods*
  14. Parlak C, Ramasami P, Kumar CS, Tursun M, Quah CK, Rhyman L, et al.
    PMID: 25974671 DOI: 10.1016/j.saa.2015.04.022
    A novel (2E)-1-(5-chlorothiophen-2-yl)-3-{4-[(E)-2-phenylethenyl]phenyl}prop-2-en-1-one [C21H15ClOS] compound has been synthesized and its structure has been characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of the compound have been examined by means of HF, MP2, BP86, BLYP, BMK, B3LYP, B3PW91, B3P86 and M06-2X functionals. Reliable vibrational assignments and molecular orbitals have been investigated by the potential energy distribution and natural bonding orbital analyses, respectively. The compound crystallizes in the triclinic space group P-1 with the cis-trans-trans form. There is a good agreement between the experimentally determined structural parameters and vibrational frequencies of the compound and those predicted theoretically using the density functional theory with the BLYP and BP86 functionals.
    Matched MeSH terms: Crystallography, X-Ray
  15. Usman A, Razak IA, Fun HK, Chantrapromma S, Zhao BG, Xu JH
    Acta Crystallogr C, 2002 Feb;58(Pt 2):o57-8.
    PMID: 11828107
    In the title compound, C(26)H(22)O(4), the pyranone ring adopts a twisted boat conformation, while the cyclohexane ring is close to an envelope conformation. The dihedral angle between the mean planes of the coumarin and naphthalene systems is 78.8(1) degree. The attached phenyl ring is in an equatorial position with respect to the cyclohexane ring.
    Matched MeSH terms: Crystallography, X-Ray
  16. Usman A, Razak IA, Fun HK, Chantrapromma S, Zhao BG, Xu JH
    Acta Crystallogr C, 2002 Jan;58(Pt 1):o24-5.
    PMID: 11781485
    In the title compound, C20H16N2O5, both of the 1-acetylisatin (1-acetyl-1H-indole-2,3-dione) moieties are planar and form a dihedral angle of 74.1 (1) degrees. Weak intermolecular hydrogen bonds and C-H...pi interactions stabilize the packing in the crystal.
    Matched MeSH terms: Crystallography, X-Ray
  17. Sim A, Chidan Kumar CS, Kwong HC, Then LY, Win YF, Quah CK, et al.
    Acta Crystallogr E Crystallogr Commun, 2017 Jun 01;73(Pt 6):896-900.
    PMID: 28638654 DOI: 10.1107/S2056989017007460
    In the title compounds, (2E,2'E)-3,3'-(1,4-phenyl-ene)bis-[1-(2-meth-oxy-phen-yl)prop-2-en-1-one], C26H22O4 (I), (2E,2'E)-3,3'-(1,4-phenyl-ene)bis-[1-(3-meth-oxy-phen-yl)prop-2-en-1-one], C26H22O4 (II) and (2E,2'E)-3,3'-(1,4-phenyl-ene)bis-[1-(3,4-di-meth-oxy-phen-yl)prop-2-en-1-one], C28H26O6 (III), the asymmetric unit consists of a half-mol-ecule, completed by crystallographic inversion symmetry. The dihedral angles between the central and terminal benzene rings are 56.98 (8), 7.74 (7) and 7.73 (7)° for (I), (II) and (III), respectively. In the crystal of (I), mol-ecules are linked by pairs of C-H⋯π inter-actions into chains running parallel to [101]. The packing for (II) and (III), features inversion dimers linked by pairs of C-H⋯O hydrogen bonds, forming R2(2)(16) and R2(2)(14) ring motifs, respectively, as parts of [201] and [101] chains, respectively.
    Matched MeSH terms: Crystallography
  18. Mohamad R, Awang N, Kamaludin NF, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Mar 01;74(Pt 3):302-308.
    PMID: 29765711 DOI: 10.1107/S2056989018001901
    The crystal and mol-ecular structures of the two title organotin di-thio-carbamate compounds, [Sn(C4H9)2(C7H14NO2S2)2], (I), and [Sn(C6H5)3(C5H10NOS2)], (II), are described. Both structures feature asymmetrically bound di-thio-carbamate ligands leading to a skew-trapezoidal bipyramidal geometry for the metal atom in (I) and a distorted tetra-hedral geometry in (II). The complete mol-ecule of (I) is generated by a crystallographic twofold axis (Sn site symmetry 2). In the crystal of (I), mol-ecules self-assemble into a supra-molecular array parallel to (10-1) via methyl-ene-C-H⋯O(meth-oxy) inter-actions. In the crystal of (II), supra-molecular dimers are formed via pairs of weak phenyl-C-H⋯π(phen-yl) contacts. In each of (I) and (II), the specified assemblies connect into a three-dimensional architecture without directional inter-actions between them. Hirshfeld surface analyses confirm the importance of H⋯H contacts in the mol-ecular packing of each of (I) and (II), and in the case of (I), highlight the importance of short meth-oxy-H⋯H(but-yl) contacts between layers.
    Matched MeSH terms: Crystallography
  19. Then LY, Chidan Kumar CS, Kwong HC, Win YF, Mah SH, Quah CK, et al.
    Acta Crystallogr E Crystallogr Commun, 2017 Jul 01;73(Pt 8):1227-1231.
    PMID: 28932442 DOI: 10.1107/S2056989017010556
    2-(Benzo-furan-2-yl)-2-oxoethyl 2-chloro-benzoate, C17H11ClO4 (I), and 2-(benzo-furan-2-yl)-2-oxoethyl 2-meth-oxy-benzoate, C18H14O5 (II), were synthesized under mild conditions. Their chemical and mol-ecular structures were analyzed by spectroscopic and single-crystal X-ray diffraction studies, respectively. These compounds possess different ortho-substituted functional groups on their phenyl rings, thus experiencing extra steric repulsion force within their mol-ecules as the substituent changes from 2-chloro (I) to 2-meth-oxy (II). The crystal packing of compound (I) depends on weak inter-molecular hydrogen bonds and π-π inter-actions. Mol-ecules are related by inversion into centrosymmetric dimers via C-H⋯O hydrogen bonds, and further strengthened by π-π inter-actions between furan rings. Conversely, mol-ecules in compound (II) are linked into alternating dimeric chains propagating along the [101] direction, which develop into a two-dimensional plate through extensive inter-molecular hydrogen bonds. These plates are further stabilized by π-π and C-H⋯π inter-actions.
    Matched MeSH terms: Crystallography, X-Ray
  20. Yau MQ, Emtage AL, Loo JSE
    J Comput Aided Mol Des, 2020 Nov;34(11):1133-1145.
    PMID: 32851579 DOI: 10.1007/s10822-020-00339-5
    Recent breakthroughs in G protein-coupled receptor (GPCR) crystallography and the subsequent increase in number of solved GPCR structures has allowed for the unprecedented opportunity to utilize their experimental structures for structure-based drug discovery applications. As virtual screening represents one of the primary computational methods used for the discovery of novel leads, the GPCR-Bench dataset was created to facilitate comparison among various virtual screening protocols. In this study, we have benchmarked the performance of Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) in improving virtual screening enrichment in comparison to docking with Glide, using the entire GPCR-Bench dataset of 24 GPCR targets and 254,646 actives and decoys. Reranking the top 10% of the docked dataset using MM/PBSA resulted in improvements for six targets at EF1% and nine targets at EF5%, with the gains in enrichment being more pronounced at the EF1% level. We additionally assessed the utility of rescoring the top ten poses from docking and the ability of short MD simulations to refine the binding poses prior to MM/PBSA calculations. There was no clear trend of the benefit observed in both cases, suggesting that utilizing a single energy minimized structure for MM/PBSA calculations may be the most computationally efficient approach in virtual screening. Overall, the performance of MM/PBSA rescoring in improving virtual screening enrichment obtained from docking of the GPCR-Bench dataset was found to be relatively modest and target-specific, highlighting the need for validation of MM/PBSA-based protocols prior to prospective use.
    Matched MeSH terms: Crystallography
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links