Displaying all 4 publications

Abstract:
Sort:
  1. Radzi R, Muangmai N, Broady P, Wan Omar WM, Lavoue S, Convey P, et al.
    PLoS One, 2019;14(11):e0224395.
    PMID: 31682631 DOI: 10.1371/journal.pone.0224395
    Terrestrial cyanobacteria are very diverse and widely distributed in Antarctica, where they can form macroscopically visible biofilms on the surfaces of soils and rocks, and on benthic surfaces in fresh waters. We recently isolated several terrestrial cyanobacteria from soils collected on Signy Island, South Orkney Islands, Antarctica. Among them, we found a novel species of Nodosilinea, named here as Nodosilinea signiensis sp. nov. This new species is morphologically and genetically distinct from other described species. Morphological examination indicated that the new species is differentiated from others in the genus by cell size, cell shape, filament attenuation, sheath morphology and granulation. 16S rDNA phylogenetic analyses clearly confirmed that N. signiensis belongs to the genus Nodosilinea, but that it is genetically distinct from other known species of Nodosilinea. The D1-D1´ helix of the 16S-23S ITS region of the new species was also different from previously described Nodosilinea species. This is the first detailed characterization of a member of the genus Nodosilinea from Antarctica as well as being a newly described species.
    Matched MeSH terms: Cyanobacteria/genetics
  2. Lau NS, Matsui M, Abdullah AA
    Biomed Res Int, 2015;2015:754934.
    PMID: 26199945 DOI: 10.1155/2015/754934
    Cyanobacteria are widely distributed Gram-negative bacteria with a long evolutionary history and the only prokaryotes that perform plant-like oxygenic photosynthesis. Cyanobacteria possess several advantages as hosts for biotechnological applications, including simple growth requirements, ease of genetic manipulation, and attractive platforms for carbon neutral production process. The use of photosynthetic cyanobacteria to directly convert carbon dioxide to biofuels is an emerging area of interest. Equipped with the ability to degrade environmental pollutants and remove heavy metals, cyanobacteria are promising tools for bioremediation and wastewater treatment. Cyanobacteria are characterized by the ability to produce a spectrum of bioactive compounds with antibacterial, antifungal, antiviral, and antialgal properties that are of pharmaceutical and agricultural significance. Several strains of cyanobacteria are also sources of high-value chemicals, for example, pigments, vitamins, and enzymes. Recent advances in biotechnological approaches have facilitated researches directed towards maximizing the production of desired products in cyanobacteria and realizing the potential of these bacteria for various industrial applications. In this review, the potential of cyanobacteria as sources of energy, bioactive compounds, high-value chemicals, and tools for aquatic bioremediation and recent progress in engineering cyanobacteria for these bioindustrial applications are discussed.
    Matched MeSH terms: Cyanobacteria/genetics
  3. Lau SC, Zhang R, Brodie EL, Piceno YM, Andersen G, Liu WT
    FEMS Microbiol Ecol, 2013 May;84(2):259-69.
    PMID: 23237658 DOI: 10.1111/1574-6941.12057
    Knowledge about the biogeography of marine bacterioplankton on the global scale in general and in Southeast Asia in particular has been scarce. This study investigated the biogeography of bacterioplankton community in Singapore seawaters. Twelve stations around Singapore island were sampled on different schedules over 1 year. Using PCR-DNA fingerprinting, DNA cloning and sequencing, and microarray hybridization of the 16S rRNA genes, we observed clear spatial variations of bacterioplankton diversity within the small area of the Singapore seas. Water samples collected from the Singapore Strait (south) throughout the year were dominated by DNA sequences affiliated with Cyanobacteria and Alphaproteobacteria that were believed to be associated with the influx of water from the open seas in Southeast Asia. On the contrary, water in the relatively polluted Johor Strait (north) were dominated by Betaproteobacteria, Gammaproteobacteria, and Bacteroidetes and that were presumably associated with river discharge and the relatively eutrophic conditions of the waterway. Bacterioplankton diversity was temporally stable, except for the episodic surge of Pseudoalteromonas, associated with algal blooms. Overall, these results provide valuable insights into the diversity of bacterioplankton communities in Singapore seas and the possible influences of hydrological conditions and anthropogenic activities on the dynamics of the communities.
    Matched MeSH terms: Cyanobacteria/genetics
  4. Suhaimi NSM, Goh SY, Ajam N, Othman RY, Chan KG, Thong KL
    World J Microbiol Biotechnol, 2017 Aug 21;33(9):168.
    PMID: 28828756 DOI: 10.1007/s11274-017-2336-0
    Banana is one of the most important fruits cultivated in Malaysia, and it provides many health benefits. However, bacterial wilt disease, which attacks bananas, inflicts major losses on the banana industry in Malaysia. To understand the complex interactions of the microbiota of bacterial wilt-diseased banana plants, we first determined the bacterial communities residing in the pseudostems of infected (symptomatic) and diseased-free (non-symptomatic) banana plants. We characterized the associated microorganisms using the targeted 16S rRNA metagenomics sequencing on the Illumina MiSeq platform. Taxonomic classifications revealed 17 and nine known bacterial phyla in the tissues of non-symptomatic and symptomatic plants, respectively. Cyanobacteria and Proteobacteria (accounted for more than 99% of the 16S rRNA gene fragments) were the two most abundant phyla in both plants. The five major genera found in both plant samples were Ralstonia, Sphingomonas, Methylobacterium, Flavobacterium, and Pseudomonas. Ralstonia was more abundant in symptomatic plant (59% out of the entire genera) as compared to those in the non-symptomatic plant (only 36%). Our data revealed that 102 bacterial genera were only assigned to the non-symptomatic plant. Overall, this study indicated that more diverse and abundant microbiota were associated with the non-symptomatic bacterial wilt-diseased banana plant as compared to the symptomatic plant. The higher diversity of endophytic microbiota in the non-symptomatic banana plant could be an indication of pathogen suppression which delayed or prevented the disease expression. This comparative study of the microbiota in the two plant conditions might provide caveats for potential biological control strategies.
    Matched MeSH terms: Cyanobacteria/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links