Displaying all 20 publications

Abstract:
Sort:
  1. Yong YK, Chiong HS, Somchit MN, Ahmad Z
    PMID: 26468073 DOI: 10.1186/s12906-015-0901-3
    Histamine is established as a potent inflammatory mediator and it is known to increased endothelial permeability by promoting gap formation between endothelial cells. Previous studies have shown that aqueous extract of Bixa orellana leaves (AEBO) exhibits antihistamine activity in vivo, yet the mechanism of its action on endothelial barrier function remains unclear. Therefore, the current study aimed to determine the protective effect of AEBO against histamine-induced hyperpermeability in vitro.
    Matched MeSH terms: Cyclic GMP/metabolism*
  2. Zakaria ZA, Abdul Rahim MH, Mohd Sani MH, Omar MH, Ching SM, Abdul Kadir A, et al.
    BMC Complement Altern Med, 2019 Apr 02;19(1):79.
    PMID: 30940120 DOI: 10.1186/s12906-019-2486-8
    BACKGROUND: Methanol extract (MECN) of Clinacanthus nutans Lindau leaves (family Acanthaceae) demonstrated peripherally and centrally mediated antinociceptive activity via the modulation of opioid/NO-mediated, but cGMP-independent pathway. In the present study, MECN was sequentially partitioned to obtain petroleum ether extract of C. nutans (PECN), which was subjected to antinociceptive study with aims of establishing its antinociceptive potential and determining the role of opioid receptors and L-arginine/nitric oxide/cyclic-guanosine monophosphate (L-arg/NO/cGMP) pathway in the observed antinociceptive activity.

    METHODS: The antinociceptive potential of orally administered PECN (100, 250, 500 mg/kg) was studied using the abdominal constriction-, hot plate- and formalin-induced paw licking-test in mice (n = 6). The effect of PECN on locomotor activity was also evaluated using the rota rod assay. The role of opioid receptors was determined by pre-challenging 500 mg/kg PECN (p.o.) with antagonist of opioid receptor subtypes, namely β-funaltrexamine (β-FNA; 10 mg/kg; a μ-opioid antagonist), naltrindole (NALT; 1 mg/kg; a δ-opioid antagonist) or nor-binaltorphimine (nor-BNI; 1 mg/kg; a κ-opioid antagonist) followed by subjection to the abdominal constriction test. In addition, the role of L-arg/NO/cGMP pathway was determined by prechallenging 500 mg/kg PECN (p.o.) with L-arg (20 mg/kg; a NO precursor), 1H-[1, 2, 4] oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 2 mg/kg; a specific soluble guanylyl cyclase inhibitor), or the combinations thereof (L-arg + ODQ) for 5 mins before subjection to the abdominal constriction test. PECN was also subjected to phytoconstituents analyses.

    RESULTS: PECN significantly (p  0.05) affect the locomotor activity of treated mice. The antinociceptive activity of PECN was significantly (p  0.05) affected by ODQ. HPLC analysis revealed the presence of at least cinnamic acid in PECN.

    CONCLUSION: PECN exerted antinocicpetive activity at peripheral and central levels possibly via the activation of non-selective opioid receptors and modulation of the NO-mediated/cGMP-independent pathway partly via the synergistic action of phenolic compounds.

    Matched MeSH terms: Cyclic GMP/metabolism*
  3. Zakaria ZA, Sani MH, Mohammat MF, Mansor NS, Shaameri Z, Kek TL, et al.
    Can. J. Physiol. Pharmacol., 2013 Dec;91(12):1143-53.
    PMID: 24289087 DOI: 10.1139/cjpp-2013-0099
    This study was carried out to determine the antinociceptive activity of a novel synthetic oxopyrrolidine-based compound, (2R,3R,4S)-ethyl 4-hydroxy-1,2-dimethyl-5-oxopyrrolidine-3-carboxylate (ASH21374), and to elucidate the involvement of the opioid, vanilloid, glutamate, and nitric oxide - cyclic guanosine monophosphate (NO/cGMP) systems in modulating the observed antinociception. ASH21374, in the doses of 2, 10, and 100 mg/kg body mass, was administered orally to mice 60 mins prior to exposure to various antinociceptive assays. From the results obtained, ASH21374 exhibited significant (P < 0.05) antinociceptive activity in the abdominal constriction, hot-plate, and formalin tests that was comparable with 100 mg/kg acetylsalicylic acid or 5 mg/kg morphine, respectively. ASH21374 also attenuated capsaicin- and glutamate-induced paw licking. Pre-treatment with 5 mg/kg naloxone significantly (P < 0.05) inhibited the activity in all assays, while pretreatment with 10 mg/kg β-funaltraxamine, 1 mg/kg naltrindole, or 1 mg/kg nor-binaltorphimine significantly (P < 0.05) reversed the activity in the abdominal constriction test. l-Arginine, N(G)-nitro-l-arginine methyl esters (l-NAME), methylene blue, and their combinations, failed to inhibit the ASH21374 antinociceptive activity. In conclusion, ASH21374 demonstrated antinociceptive activities on the peripheral and central nervous systems, mediated through the activation of opioid receptors, inhibition of the glutamatergic system, and attenuation of vanilloid-mediated nociceptive transmission. Further studies have been planned to determine the pharmacological potential of ASH21374.
    Matched MeSH terms: Cyclic GMP/metabolism
  4. Kamaldin MN, Akhtar MN, Mohamad AS, Lajis N, Perimal EK, Akira A, et al.
    Molecules, 2013 Apr 10;18(4):4209-20.
    PMID: 23612473 DOI: 10.3390/molecules18044209
    Previous studies have shown that systemic administration of 6'-hydroxy-2',4'-dimethoxychalcone (flavokawin B, FKB) exerts significant peripheral and central antinociceptive effects in laboratory animals. However, the mechanisms underlying these peripheral and central antinociceptive effects have yet to be elucidated. Therefore, the objective of the present study was to evaluate the participation of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/potassium (K+) channels pathway in the peripheral antinociception induced by FKB. It was demonstrated that intraplantar (i.pl.) administration of FKB (150, 250, 375 and 500 µg/paw) resulted in dose-dependent peripheral antinociception against mechanical hyperalgesia in carrageenan-induced hyperalgesia test model in rats. The possibility of FKB having either a central or a systemic effect was excluded since administration of FKB into the right paw did not elicit antinociception in the contralateral paw. Furthermore, peripheral antinociception induced by FKB (500 µg/paw) was significantly reduced when L-arginine (25 µg/paw, i.pl.), Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 50 µg/paw, i.pl.), glibenclamide (300 µg/paw, i.pl.), tetraethylammonium (300 µg/paw, i.pl.) and charybdotoxin (3 µg/paw, i.pl.) were injected before treatment. Taken together, our present data suggest that FKB elicits peripheral antinociception when assessed in the mechanical hyperalgesia induced by carrageenan. In addition, it was also demonstrated that this effect was mediated through interaction of the NO/cGMP/K+ channels signaling pathway.
    Matched MeSH terms: Cyclic GMP/metabolism*
  5. Ng CT, Fong LY, Low YY, Ban J, Hakim MN, Ahmad Z
    Physiol Res, 2016 Dec 13;65(6):1053-1058.
    PMID: 27539106
    The endothelial barrier function is tightly controlled by a broad range of signaling cascades including nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway. It has been proposed that disturbances in NO and cGMP production could interfere with proper endothelial barrier function. In this study, we assessed the effect of interferon-gamma (IFN-gamma), a pro-inflammatory cytokine, on NO and cGMP levels and examined the mechanisms by which NO and cGMP regulate the IFN-gamma-mediated HUVECs hyperpermeability. The flux of fluorescein isothiocyanate-labeled dextran across cell monolayers was used to study the permeability of endothelial cells. Here, we found that IFN-gamma significantly attenuated basal NO concentration and the increased NO levels supplied by a NO donor, sodium nitroprusside (SNP). Besides, application of IFN-gamma also significantly attenuated both the basal cGMP concentration and the increased cGMP production donated by a cell permeable cGMP analogue, 8-bromo-cyclic GMP (8-Br-cGMP). In addition, exposure of the cell monolayer to IFN-gamma significantly increased HUVECs basal permeability. However, L-NAME pretreatment did not suppress IFN-gamma-induced HUVECs hyperpermeability. L-NAME pretreatment followed by SNP or SNP pretreatment partially reduced IFN-gamma-induced HUVECs hyperpermeability. Pretreatment with a guanylate cyclase inhibitor, 6-anilino-5,8-quinolinedione (LY83583), led to a further increase in IFN-gamma-induced HUVECs hyperpermeability. The findings suggest that the mechanism underlying IFN-gamma-induced increased HUVECs permeability is partly related to the inhibition of NO production.
    Matched MeSH terms: Cyclic GMP/metabolism
  6. Romero M, Silistre H, Lovelock L, Wright VJ, Chan KG, Hong KW, et al.
    Nucleic Acids Res., 2018 07 27;46(13):6823-6840.
    PMID: 29718466 DOI: 10.1093/nar/gky324
    Pseudomonads typically carry multiple non-identical alleles of the post-transcriptional regulator rsmA. In Pseudomonas aeruginosa, RsmN is notable in that its structural rearrangement confers distinct and overlapping functions with RsmA. However, little is known about the specificities of RsmN for its target RNAs and overall impact on the biology of this pathogen. We purified and mapped 503 transcripts directly bound by RsmN in P. aeruginosa. About 200 of the mRNAs identified encode proteins of demonstrated function including some determining acute and chronic virulence traits. For example, RsmN reduces biofilm development both directly and indirectly via multiple pathways, involving control of Pel exopolysaccharide biosynthesis and c-di-GMP levels. The RsmN targets identified are also shared with RsmA, although deletion of rsmN generally results in less pronounced phenotypes than those observed for ΔrsmA or ΔrsmArsmNind mutants, probably as a consequence of different binding affinities. Targets newly identified for the Rsm system include the small non-coding RNA CrcZ involved in carbon catabolite repression, for which differential binding of RsmN and RsmA to specific CrcZ regions is demonstrated. The results presented here provide new insights into the intricacy of riboregulatory networks involving multiple but distinct RsmA homologues.
    Matched MeSH terms: Cyclic GMP/metabolism
  7. Tan CS, Loh YC, Ng CH, Ch'ng YS, Asmawi MZ, Ahmad M, et al.
    Biomed. Pharmacother., 2018 Jan;97:985-994.
    PMID: 29136777 DOI: 10.1016/j.biopha.2017.11.021
    Although Banxia Baizhu Tianma Tang (BBT) has been long administered for hypertensive treatment in Traditional Chinese Medicine (TCM), the ratio of the herbal components that makes up the formulation has not been optimized with respect to the anti-hypertensive effect that it inherently possesses. A newly amended BBT (ABBT) formulation was developed using the evidence-based approach of orthogonal stimulus-response compatibility model. The ABBT showed enhanced therapeutic effect while maintaining its traditional theoretical approach rooted in TCM. This study was designed to investigate the possible mechanism of actions involved in the vasodilatory activity of ABBT-50 by evaluating its vasodilative effect on isolated Sprague Dawley rats in the presence of absence of various antagonists. When pre-contracted with phenylephrine, relaxation was observed in endothelium intact (EC50=0.027±0.003mg/ml, Rmax=109.8±2.12%) and denuded aortic rings (EC50=0.409±0.073mg/ml, Rmax=63.15±1.78%), as well as in endothelium intact aortic rings pre-contracted with potassium chloride (EC50=32.7±12.16mg/ml, Rmax=34.02±3.82%). Significant decrease in the vasodilative effect of ABBT-50 was observed in the presence of Nω-nitro-l-arginine methyl ester (EC50=0.12±0.021mg/ml, Rmax=75.33±3.28%), 1H-[1,2,4] Oxadiazolo[4,3-a]quinoxalin-1-one (EC50=0.463±0.18mg/ml, Rmax=54.48±2.02%), methylene blue (EC50=0.19±0.037mg/ml, Rmax=83.69±3.19%), indomethacin (EC50=0.313±0.046mg/ml, Rmax=71.33±4.12%), atropine (EC50=0.146±0.013mg/ml, Rmax=77.2±3.41%), and 4-aminopyridine (EC50=0.045±0.008mg/ml, Rmax=95.55±2.36%). ABBT-50 was also suppressing Ca2+ release from sarcoplasmic reticulum and inhibiting calcium channels. Vasodilatory effects of ABBT-50 are mediated through NO/sGC/cGMP cascade and PGI2, followed by muscarinic pathways and calcium channels.
    Matched MeSH terms: Cyclic GMP/metabolism
  8. Yam MF, Tan CS, Shibao R
    Hypertens. Res., 2018 Oct;41(10):787-797.
    PMID: 30111856 DOI: 10.1038/s41440-018-0083-8
    Orthosiphon stamineus Benth. (Lambiaceae) is an important traditional plant for the treatment of hypertension. Previous studies have demonstrated that the sinensetin content in O. stamineus is correlated with its vasorelaxant activity. However, there is still very little information regarding the vasorelaxant effect of sinensetin due to a lack of scientific studies. Therefore, the present study was designed to investigate the underlying mechanism of action of sinensetin in vasorelaxation using an in vitro precontraction aortic ring assay. The changes in the tension of the aortic ring preparations were recorded using a force-displacement transducer and the PowerLab system. The mechanisms of the vasorelaxant effect of sinensetin were determined in the presence of antagonists. Sinensetin caused relaxation of the aortic ring precontracted with PE in the presence and absence of the endothelium and with potassium chloride in endothelium-intact aortic rings. In the presence of Nω-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor), methylene blue (cyclic guanosine monophosphate lowering agent), ODQ (selective soluble guanylate cyclase inhibitor), indomethacin (a nonselective cyclooxygenase inhibitor), tetraethylammonium (nonselective calcium activator K+ channel blocker), 4-aminopyridine (voltage-dependent K+ channel blocker), barium chloride (inwardly rectifying Kir channel blocker), glibenclamide (nonspecific ATP-sensitive K+ channel blocker), atropine (muscarinic receptor blocker), or propranolol (β-adrenergic receptor blocker), the relaxation stimulated by sinensetin was significantly reduced. Sinensetin was also active in reducing Ca2+ release from the sarcoplasmic reticulum (via IP3R) and in blocking calcium channels (VOCC). The present study demonstrates the vasorelaxant effect of sinensetin, which involves the NO/sGC/cGMP and indomethacin pathways, calcium and potassium channels, and muscarinic and beta-adrenergic receptors.
    Matched MeSH terms: Cyclic GMP/metabolism*
  9. Zulazmi NA, Gopalsamy B, Min JC, Farouk AA, Sulaiman MR, Bharatham BH, et al.
    Molecules, 2017 Mar 30;22(4).
    PMID: 28358309 DOI: 10.3390/molecules22040555
    The present study investigates the involvement of the l-arginine-Nitric Oxide-cGMP-K⁺ ATP pathways responsible for the action of anti-allodynic and antihyperalgesic activities of zerumbone in chronic constriction injury (CCI) induced neuropathic pain in mice. The role of l-arginine-NO-cGMP-K⁺ was assessed by the von Frey and the Randall-Selitto tests. Both allodynia and hyperalgesia assessments were carried out on the 14th day post CCI, 30 min after treatments were given for each respective pathway. Anti-allodynic and antihyperalgesic effects of zerumbone (10 mg/kg, i.p) were significantly reversed by the pre-treatment of l-arginine (10 mg/kg), 1H [1,2,4]Oxadiazole[4,3a]quinoxalin-1-one (ODQ), a soluble guanosyl cyclase blocker (2 mg/kg i.p.) and glibenclamide (ATP-sensitive potassium channel blocker) (10 mg/kg i.p.) (p < 0.05). Taken together, these results indicate that systemic administration of zerumbone produces significant anti-allodynic and antihyperalgesic activities in neuropathic pain in mice possibly due to involvement of the l-arginine-NO-cGMP-PKG-K⁺ ATP channel pathways in CCI model.
    Matched MeSH terms: Cyclic GMP/metabolism
  10. Bello I, Usman NS, Mahmud R, Asmawi MZ
    J Ethnopharmacol, 2015 Dec 4;175:422-31.
    PMID: 26429073 DOI: 10.1016/j.jep.2015.09.031
    Alstonia scholaris has a long history of use in the Ayurveda traditional treatment of various ailments including hypertension. We have reported the blood pressure lowering activity of the extract of A. scholaris. The following research aim to delineate the pharmacological mechanism involve in the antihypertensive action.
    Matched MeSH terms: Cyclic GMP/metabolism
  11. Perimal EK, Akhtar MN, Mohamad AS, Khalid MH, Ming OH, Khalid S, et al.
    Basic Clin. Pharmacol. Toxicol., 2011 Mar;108(3):155-62.
    PMID: 20955360 DOI: 10.1111/j.1742-7843.2010.00635.x
    This study investigated the antinociceptive effects of zerumbone in chemical behavioural models of nociception in mice. Zerumbone given through intraperitoneal route (i.p.) produced dose-related antinociception when assessed on acetic acid-induced abdominal writhing test in mice. In addition, the i.p. administration of zerumbone exhibited significant inhibition of the neurogenic pain induced by intraplantar (i.pl.) injection of capsaicin and bradykinin. Likewise, zerumbone given by i.p. route reduced the nociception produced by i.pl. injection of glutamate and phorbol myristate acetate (PMA). The antinociception caused by zerumbone in the acetic acid test was significantly attenuated by i.p. pre-treatment of mice with l-arginine (nitric oxide precursor) and glibenclamide (ATP-sensitive K(+) channel inhibitor). However, the antinociception of zerumbone was enhanced by methylene blue (non-specific gyanylyl cyclase inhibitor). Together, these results indicate that zerumbone produces pronounced antinociception against chemical models of nociception in mice. It also strongly suggests that the l-arginine-nitric oxide-cGMP-PKC-K(+) ATP channel pathways, the TRPV1 and kinin B2 receptors play an important role in the zerumbone-induced antinociception.
    Matched MeSH terms: Cyclic GMP/metabolism*
  12. Sosroseno W, Bird PS, Seymour GJ
    Oral Microbiol. Immunol., 2009 Feb;24(1):50-5.
    PMID: 19121070 DOI: 10.1111/j.1399-302X.2008.00475.x
    Human osteoblasts induced by inflammatory stimuli express an inducible nitric oxide synthase (iNOS). The aim of the present study was to test the hypothesis that Aggregatibacter actinomycetemcomitans lipopolysaccharide stimulates the production of nitric oxide (NO) by a human osteoblast-like cell line (HOS cells).
    Matched MeSH terms: Cyclic GMP/metabolism
  13. Zakaria ZA, Sulaiman MR, Jais AM, Somchit MN, Jayaraman KV, Balakhrisnan G, et al.
    Fundam Clin Pharmacol, 2006 Aug;20(4):365-72.
    PMID: 16867020
    The present study was carried out to investigate on the possible involvement of L-arginine/nitric oxide/cyclic guanosine monophosphate (L-arginine/NO/cGMP) pathway in the aqueous extract of Muntingia calabura (AEMC) leaves antinociception in mice assessed by abdominal constriction test. The AEMC, obtained by soaking the dried leaves in distilled water (DH(2)O) (1 : 2; w/v) for 24 h, was prepared in concentrations of 10%, 50% and 100% that were approximately equivalent to doses of 27, 135 and 270 mg/kg, and administered subcutaneously (s.c.) 5 min after pre-treatment (s.c.) of mice with DH(2)O, L-arginine (20 mg/kg), N(G)-monomethyl-L-arginine acetate (L-NMMA; 20 mg/kg), N(G)-nitro-L-arginine methyl esters (L-NAME; 20 mg/kg), methylene blue (MB) (20 mg/kg), respectively. The AEMC was found to exhibit a concentration-dependent antinociception after pre-challenge with DH(2)O. Interestingly, pre-treatment with L-arginine was found to block significantly (P < 0.05) the AEMC antinociception but only at the highest concentration (100%) of AEMC used. On the other hand, pre-treatment with L-NAME was found to significantly (P < 0.05) enhance the low concentration but inhibit the high concentration AEMC antinociception. MB was found to significantly (P < 0.05) enhance AEMC antinociception at all concentrations used. Except for the higher concentration of AEMC used, co-treatment with L-NAME was found to insignificantly and significantly (P < 0.05) reverse the L-arginine effect when given alone or with low concentration AEMC, respectively. In addition, co-treatment with MB significantly (P < 0.05) reversed the L-arginine effect when given alone or with 10% concentration AEMC but failed to affect the activity of the rest of concentrations used. As a conclusion, this study has demonstrated the involvement of L-arginine/NO/cGMP pathway in AEMC antinociception.
    Matched MeSH terms: Cyclic GMP/metabolism*
  14. Mokhtar SS, Vanhoutte PM, Leung SW, Suppian R, Yusof MI, Rasool AH
    Eur. J. Pharmacol., 2016 Feb 15;773:78-84.
    PMID: 26825543 DOI: 10.1016/j.ejphar.2016.01.013
    Diabetes is associated with endothelial dysfunction, which is characterized by impaired endothelium-dependent relaxations. The present study aimed to examine the role of nitric oxide (NO), prostacyclin and endothelium-dependent hyperpolarization (EDH), in the relaxation of ventral tail arteries of rats under diabetic conditions. Relaxations of tail arteries of control and diabetic rats were studied in wire myograph. Western blotting and immunostaining were used to determine the presence of proteins. Acetylcholine-induced relaxations were significantly smaller in arteries of diabetic compared to control rats (Rmax; 70.81 ± 2.48% versus 85.05 ± 3.15%). Incubation with the combination of non-selective cyclooxygenase (COX) inhibitor, indomethacin and potassium channel blockers, TRAM 34 and UCL 1684, demonstrated that NO-mediated relaxation was attenuated significantly in diabetic compared to control rats (Rmax; 48.47 ± 5.84% versus 68.39 ± 6.34%). EDH-type (in the presence of indomethacin and NO synthase inhibitor, LNAME) and prostacyclin-mediated (in the presence of LNAME plus TRAM 34 and UCL 1684) relaxations were not significantly reduced in arteries of diabetic compared to control rats [Rmax: (EDH; 17.81 ± 6.74% versus 34.16 ± 4.59%) (prostacyclin; 15.85 ± 3.27% versus 17.23 ± 3.75%)]. Endothelium-independent relaxations to sodium nitroprusside, salbutamol and prostacyclin were comparable in the two types of preparations. Western blotting and immunostaining indicated that diabetes diminished the expression of endothelial NO synthase (eNOS), while increasing those of COX-1 and COX-2. Thus, since acetylcholine-induced NO-mediated relaxation was impaired in diabetes because of reduced eNOS protein expression, pharmacological intervention improving NO bioavailability could be useful in the management of diabetic endothelial dysfunction.
    Matched MeSH terms: Cyclic GMP/metabolism
  15. Ling WC, Murugan DD, Lau YS, Vanhoutte PM, Mustafa MR
    Sci Rep, 2016 09 12;6:33048.
    PMID: 27616322 DOI: 10.1038/srep33048
    Sodium nitrite (NaNO2) induces relaxation in isolated arteries partly through an endothelium-dependent mechanism involving NO-eNOS-sGC-cGMP pathway. The present study was designed to investigate the effect of chronic NaNO2 administration on arterial systolic blood pressure (SBP) and vascular function in hypertensive rats. NaNO2 (150 mg L-1) was given in drinking water for four weeks to spontaneously (SHR) and Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) treated hypertensive SD rats. Arterial SBP and vascular function in isolated aortae were studied. Total plasma nitrate/nitrite and vascular cyclic guanosine monophosphate (cGMP) levels were measured using commercially available assay kits. Vascular nitric oxide (NO) levels were evaluated by DAF-FM fluorescence while the proteins involved in endothelial nitric oxide synthase (eNOS) activation was determined by Western blotting. NaNO2 treatment reduced SBP, improved the impaired endothelium-dependent relaxation, increased plasma total nitrate/nitrite level and vascular tissue NO and cGMP levels in SHR. Furthermore, increased presence of phosphorylated eNOS and Hsp-90 was observed in NaNO2-treated SHR. The beneficial effect of nitrite treatment was not observed in L-NAME treated hypertensive SD rats. The present study provides evidence that chronic treatment of genetically hypertensive rats with NaNO2 improves endothelium-dependent relaxation in addition to its antihypertensive effect, partly through mechanisms involving activation of eNOS.
    Matched MeSH terms: Cyclic GMP/metabolism
  16. Yam MF, Tan CS, Ahmad M, Ruan S
    Am. J. Chin. Med., 2016;44(7):1413-1439.
    PMID: 27785939
    Orthosiphon stamineus Benth. (Lamiaceae) is an important plant in traditional folk medicine that is used to treat hypertension and kidney stones. In humans, this plant has been tested as an addition regiment for antihypertensive treatment. Among the treatments for hypertension, O. stamineus had been to have diuretic and vasorelaxant effects in animal models. There is still very little information regarding the vasorelaxant effect of O. stamineus. Therefore, the present study was designed to investigate the vasorelaxant activity and mechanism of action of the fractions of O. stamineus. The vasorelaxant activity and the underlying mechanisms of the chloroform fraction of the 50% methanolic extract of O. stamineus (CF) was evaluated on thoracic aortic rings isolated from Sprague Dawley rats. CF caused relaxation of the aortic ring pre-contracted with phenylephrine in the presence and absence of endothelium, and pre-contracted with potassium chloride in endothelium-intact aortic ring. In the presence of endothelium, both indomethacin (a nonselective cyclooxygenase inhibitor) and [Formula: see text]-[1,2,4]Oxadiazolo[4,3-[Formula: see text]]quinoxalin-1-one (ODQ, selective soluble guanylate cyclase inhibitor) had a small effect on the vasorelaxation response. On the other hand, in the presence of Nω-nitro-L-arginine methyl ester (L-NAME, nitric oxide synthase inhibitor), methylene blue (cyclic guanosine monophosphate lowering agent), tetraethylammonium ([Formula: see text], nonselective calcium activator [Formula: see text] channel blocker), 4-aminopyridine (4-AP, voltage-dependent [Formula: see text] channel blocker), barium chloride ([Formula: see text], inwardly rectifying [Formula: see text] channel blocker), glibenclamide (nonspecific ATP-sensitive [Formula: see text] channel blocker), atropine (muscarinic receptor blocker) and propranolol (β-adrenergic receptor blocker), the vasorelaxant effect significantly reduced the relaxation stimulated by CF. CF was also found to be active in reducing [Formula: see text] release from the sarcoplasmic reticulum and blocking calcium channels.
    Matched MeSH terms: Cyclic GMP/metabolism*
  17. Ihara H, Kasamatsu S, Kitamura A, Nishimura A, Tsutsuki H, Ida T, et al.
    Chem. Res. Toxicol., 2017 09 18;30(9):1673-1684.
    PMID: 28837763 DOI: 10.1021/acs.chemrestox.7b00120
    Electrophiles such as methylmercury (MeHg) affect cellular functions by covalent modification with endogenous thiols. Reactive persulfide species were recently reported to mediate antioxidant responses and redox signaling because of their strong nucleophilicity. In this study, we used MeHg as an environmental electrophile and found that exposure of cells to the exogenous electrophile elevated intracellular concentrations of the endogenous electrophilic molecule 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), accompanied by depletion of reactive persulfide species and 8-SH-cGMP which is a metabolite of 8-nitro-cGMP. Exposure to MeHg also induced S-guanylation and activation of H-Ras followed by injury to cerebellar granule neurons. The electrophile-induced activation of redox signaling and the consequent cell damage were attenuated by pretreatment with a reactive persulfide species donor. In conclusion, exogenous electrophiles such as MeHg with strong electrophilicity impair the redox signaling regulatory mechanism, particularly of intracellular reactive persulfide species and therefore lead to cellular pathogenesis. Our results suggest that reactive persulfide species may be potential therapeutic targets for attenuating cell injury by electrophiles.
    Matched MeSH terms: Cyclic GMP/metabolism
  18. Ling WC, Mustafa MR, Vanhoutte PM, Murugan DD
    Vascul. Pharmacol., 2018 03;102:11-20.
    PMID: 28552746 DOI: 10.1016/j.vph.2017.05.003
    AIM: Endothelial dysfunction accompanied by an increase in oxidative stress is a key event leading to hypertension. As dietary nitrite has been reported to exert antihypertensive effect, the present study investigated whether chronic oral administration of sodium nitrite improves vascular function in conduit and resistance arteries of hypertensive animals with elevated oxidative stress.

    METHODS: Sodium nitrite (50mg/L) was given to angiotensin II-infused hypertensive C57BL/6J (eight to ten weeks old) mice for two weeks in the drinking water. Arterial systolic blood pressure was measured using the tail-cuff method. Vascular responsiveness of isolated aortae and renal arteries was studied in wire myographs. The level of nitrite in the plasma and the cyclic guanosine monophosphate (cGMP) content in the arterial wall were determined using commercially available kits. The production of reactive oxygen species (ROS) and the presence of proteins (nitrotyrosine, NOx-2 and NOx-4) involved in ROS generation were evaluated with dihydroethidium (DHE) fluorescence and by Western blotting, respectively.

    RESULTS: Chronic administration of sodium nitrite for two weeks to mice with angiotensin II-induced hypertension decreased systolic arterial blood pressure, reversed endothelial dysfunction, increased plasma nitrite level as well as vascular cGMP content. In addition, sodium nitrite treatment also decreased the elevated nitrotyrosine and NOx-4 protein level in angiotensin II-infused hypertensive mice.

    CONCLUSIONS: The present study demonstrates that chronic treatment of hypertensive mice with sodium nitrite improves impaired endothelium function in conduit and resistance vessels in addition to its antihypertensive effect, partly through inhibition of ROS production.

    Matched MeSH terms: Cyclic GMP/metabolism
  19. Khalid MH, Akhtar MN, Mohamad AS, Perimal EK, Akira A, Israf DA, et al.
    J Ethnopharmacol, 2011 Sep 1;137(1):345-51.
    PMID: 21664960 DOI: 10.1016/j.jep.2011.05.043
    Zingiber zerumbet (L.) Smith, a wild edible ginger species or locally known as "lempoyang", commonly used in the Malays traditional medicine as an appetizer or to treat stomachache, toothache, muscle sprain and as a cure for swelling sores and cuts.
    Matched MeSH terms: Cyclic GMP/metabolism
  20. Ajay M, Achike FI, Mustafa MR
    Pharmacol. Res., 2007 May;55(5):385-91.
    PMID: 17317209
    In this study, we report the effects of a non-antioxidant flavonoid flavone on vascular reactivity in Wistar-Kyoto (WKY) rat isolated aortae. Whether flavone directly modulates vascular reactivity in spontaneously hypertensive rat (SHR) and streptozotocin-induced diabetic-WKY rat isolated aortae was also determined. Thoracic aortic rings were mounted in organ chambers and exposed to various drug treatments in the presence of flavone (10 microM) or its vehicle (DMSO), which served as control. Pretreatment with flavone enhanced relaxant effects to endothelium-dependent vasodilator acetylcholine (ACh) and attenuated contractile effects to alpha(1)-receptor agonist phenylephrine (PE) in WKY aortae compared to those observed in control aortic rings. Flavone had no effect on relaxations to ACh in WKY aortae incubated with either L-NAME or methylene blue, but enhanced relaxations to ACh in WKY aortae incubated with indomethacin or partially depolarized with KCl. Relaxations to ACh are totally abolished in both control or flavone pretreated endothelium-denuded WKY aortae. Flavone attenuated the inhibition by beta-NADH of ACh-induced relaxation in WKY aortae, but it had no significant effect on the transient contractions induced by beta-NADH nor the pyrogallol-induced abolishment of ACh-induced relaxation in WKY aortae. Flavone enhanced endothelium-independent relaxation to sodium nitroprusside (SNP) in both endothelium-intact and -denuded WKY aortae. Flavone enhanced relaxation to ACh and SNP as well as attenuated contractile effects to PE in SHR and diabetic aortae, a finding similar to that observed in normal WKY aortae. From these results, we conclude that flavone modulates vascular reactivity in normal as well as hypertensive and diabetic aortae. These effects of flavone results probably through enhanced bioactivity of nitric oxide released from the endothelium.
    Matched MeSH terms: Cyclic GMP/metabolism
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links