Displaying all 16 publications

Abstract:
Sort:
  1. Hushiarian R, Yusof NA, Abdullah AH, Ahmad SA, Dutse SW
    Molecules, 2014 Apr 09;19(4):4355-68.
    PMID: 24722589 DOI: 10.3390/molecules19044355
    Although nanoparticle-enhanced biosensors have been extensively researched, few studies have systematically characterized the roles of nanoparticles in enhancing biosensor functionality. This paper describes a successful new method in which DNA binds directly to iron oxide nanoparticles for use in an optical biosensor. A wide variety of nanoparticles with different properties have found broad application in biosensors because their small physical size presents unique chemical, physical, and electronic properties that are different from those of bulk materials. Of all nanoparticles, magnetic nanoparticles are proving to be a versatile tool, an excellent case in point being in DNA bioassays, where magnetic nanoparticles are often used for optimization of the hybridization and separation of target DNA. A critical step in the successful construction of a DNA biosensor is the efficient attachment of biomolecules to the surface of magnetic nanoparticles. To date, most methods of synthesizing these nanoparticles have led to the formation of hydrophobic particles that require additional surface modifications. As a result, the surface to volume ratio decreases and nonspecific bindings may occur so that the sensitivity and efficiency of the device deteriorates. A new method of large-scale synthesis of iron oxide (Fe3O4) nanoparticles which results in the magnetite particles being in aqueous phase, was employed in this study. Small modifications were applied to design an optical DNA nanosensor based on sandwich hybridization. Characterization of the synthesized particles was carried out using a variety of techniques and CdSe/ZnS core-shell quantum dots were used as the reporter markers in a spectrofluorophotometer. We showed conclusively that DNA binds to the surface of ironoxide nanoparticles without further surface modifications and that these magnetic nanoparticles can be efficiently utilized as biomolecule carriers in biosensing devices.
    Matched MeSH terms: DNA, Fungal/analysis*
  2. Ng KP, Ngeow YF, Yew SM, Hassan H, Soo-Hoo TS, Na SL, et al.
    Eukaryotic Cell, 2012 May;11(5):703-4.
    PMID: 22544898 DOI: 10.1128/EC.00074-12
    Daldinia eschscholzii is an invasive endophyte that is most commonly found in plant tissues rich in secondary metabolites. We report the draft genome sequence of D. eschscholzii isolated from blood culture. The draft genome is 35,494,957 bp in length, with 42,898,665 reads, 61,449 contigs, and a G+C content of 46.8%. The genome was found to contain a high abundance of genes associated with plant cell wall degradation enzymes, mycotoxin production, and antifungal drug resistance.
    Matched MeSH terms: DNA, Fungal/analysis
  3. Ng KP, Yew SM, Chan CL, Soo-Hoo TS, Na SL, Hassan H, et al.
    Eukaryotic Cell, 2012 May;11(5):705-6.
    PMID: 22544899 DOI: 10.1128/EC.00081-12
    Cladosporium sphaerospermum is one of the most widely distributed allergens causing serious problems in patients with respiratory tract disease. We report the 26,644,473-bp draft genome sequence and gene annotation of C. sphaerospermum UM843. Analysis of the genome sequence led to the finding of genes associated with C. sphaerospermum's melanin biosynthesis, allergens, and antifungal drug resistance.
    Matched MeSH terms: DNA, Fungal/analysis
  4. Desjardin DE, Peay KG, Bruns TD
    Mycologia, 2011 Sep-Oct;103(5):1119-23.
    PMID: 21558499 DOI: 10.3852/10-433
    A gasteroid bolete collected recently in Sarawak on the island of Borneo is described as the new species Spongiforma squarepantsii. A comprehensive description, illustrations, phylogenetic placement and a comparison with a closely allied species are provided.
    Matched MeSH terms: DNA, Fungal/analysis
  5. Yazdanpanah A, Khaithir TM
    J Clin Lab Anal, 2014 Jan;28(1):1-9.
    PMID: 24375729 DOI: 10.1002/jcla.21635
    Candida speciation is vital for epidemiology and management of candidiasis. Nonmolecular conventional methods often fail to identify closely related germ tube positive yeasts from clinical specimens. The present study was conducted to identify these yeasts and to highlight issues in conventional versus molecular methods of identification. A total of 98 germ tube positive yeasts from high vaginal swabs were studied over a 12-month period. Isolates were examined with various methods including growth at 42 °C and 45 °C on Sabouraud dextrose agar (SDA), color development on CHROMagar Candida medium, chlamydospore production on corn meal agar at 25 °C, carbohydrate assimilation using ID 32C system, and polymerase chain reaction using a single pair of primers targeting the hyphal wall protein 1 (Hwp1) gene. Of all the isolates studied, 97 were molecularly confirmed as C. albicans and one isolate was identified as C. dubliniensis. No C. africana was detected in this study. The molecular method used in our study was an accurate and useful tool for discriminating C. albicans, C. dubliniensis, and C. africana. The conventional methods, however, were less accurate and riddled with many issues that will be discussed in further details.
    Matched MeSH terms: DNA, Fungal/analysis
  6. Schmid J, Herd S, Hunter PR, Cannon RD, Yasin MSM, Samad S, et al.
    Microbiology (Reading), 1999 Sep;145 ( Pt 9):2405-2413.
    PMID: 10517593 DOI: 10.1099/00221287-145-9-2405
    Epidemiological studies, using the probe Ca3, have shown that in a given patient population a single cluster of genetically related Candida albicans isolates usually predominates. The authors have investigated whether these local clusters are part of a single group, geographically widespread and highly prevalent as an aetiological agent of various types of candidiasis. An unrooted neighbour-joining tree of 266 infection-causing C. albicans isolates (each from a different individual) from 12 geographical regions in 6 countries was created, based on genetic distances generated by Ca3 fingerprinting. Thirty-seven per cent of all isolates formed a single genetically homogeneous cluster (cluster A). The remainder of isolates were genetically diverse. Using the maximum branch length within cluster A as a cut-off, they could be divided into 37 groups, whose prevalence ranged between 0.3% and 9%. Strains from cluster A were highly prevalent in all but one geographical region, with a mean prevalence across all regions of 41%. When isolates were separated into groups based on patient characteristics or type of infection, strains from cluster A had a prevalence exceeding 27% in each group, and their mean prevalence was 43% across all patient characteristics. These data provide evidence that cluster A constitutes a general-purpose genotype, which is geographically widespread and acts as a predominant aetiological agent of all forms of candidiasis in all categories of patients surveyed.
    Matched MeSH terms: DNA, Fungal/analysis
  7. Norbäck D, Hashim JH, Hashim Z, Cai GH, Sooria V, Ismail SA, et al.
    Sci Total Environ, 2017 Jan 15;577:148-154.
    PMID: 27802882 DOI: 10.1016/j.scitotenv.2016.10.148
    Few health studies exist on dampness and mould in schools in the tropics. We studied associations between fraction of exhaled nitric oxide (FeNO), respiratory symptoms and airway infections among students and dampness and fungal DNA in schools in Malaysia. A total of 368 randomly selected students from 32 classrooms in 8 secondary schools in Penang, Malaysia, participated (58% participation rate). Information on current respiratory symptoms and the home environment was collected by a standardised questionnaire. FeNO was measured by NIOX MINO (50ml/min). The classrooms were inspected and dust was collected by vacuuming on special filters and was analysed for five fungal DNA sequences by quantitative PCR. Linear mixed models and 3-level multiple logistic regression (school, classroom, student) were applied adjusting for demographic data and the home environment. Totally 10.3% reported doctor's diagnosed asthma, 15.1% current wheeze, 12.4% current asthma, 37.3% daytime breathlessness, 10.2% nocturnal breathlessness, 38.9% airway infections and 15.5% had pollen or furry pet allergy. The geometric mean of FeNO was 19.9ppb and 45% had elevated FeNO (>20ppb). Boys had higher levels of FeNO. Chinese had less daytime breathlessness than Malay (OR=0.30: p<0.001). Indoor carbon dioxide levels were low (380-720ppm). Dampness was observed in 18% of the classrooms and was associated with respiratory infections (OR=3.70; 95% CI 1.14-12.1) and FeNO (p=0.04). Aspergillus versicolor DNA was detected in 67% of the classrooms. Higher numbers of Aspergillus versicolor DNA in classroom dust were associated with wheeze (p=0.006), current asthma (p=0.002), respiratory infections (p=0.005) and elevated FeNO levels (p=0.02). In conclusion, respiratory symptoms were common among the students and the high FeNO levels indicate ongoing airway inflammation. Building dampness and the mould Aspergillus versicolor in schools in Malaysia can be risk factors for impaired respiratory health among the students.
    Matched MeSH terms: DNA, Fungal/analysis*
  8. Norbäck D, Markowicz P, Cai GH, Hashim Z, Ali F, Zheng YW, et al.
    PLoS One, 2014;9(2):e88303.
    PMID: 24523884 DOI: 10.1371/journal.pone.0088303
    There are few studies on associations between respiratory health and allergens, fungal and bacterial compounds in schools in tropical countries. The aim was to study associations between respiratory symptoms in pupils and ethnicity, chemical microbial markers, allergens and fungal DNA in settled dust in schools in Malaysia. Totally 462 pupils (96%) from 8 randomly selected secondary schools in Johor Bahru, Malaysia, participated. Dust was vacuumed from 32 classrooms and analysed for levels of different types of endotoxin as 3-hydroxy fatty acids (3-OH), muramic acid, ergosterol, allergens and five fungal DNA sequences. Multiple logistic regression was applied. Totally 13.1% pupils reported doctor's diagnosed asthma, 10.3% wheeze and 21.1% pollen or pet allergy. Indian and Chinese children had less atopy and asthma than Malay. Carbon dioxide levels were low (380-690 ppm). No cat (Fel d1), dog (Can f 1) or horse allergens (Ecu cx) were detected. The levels of Bloomia tropicalis (Blo t), house dust mite allergens (Der p 1, Der f 1, Der m 1) and cockroach allergens (Per a 1 and Bla g 1) were low. There were positive associations between levels of Aspergillus versicolor DNA and daytime breathlessness, between C14 3-OH and respiratory infections and between ergosterol and doctors diagnosed asthma. There were negative (protective) associations between levels of C10 3-OH and wheeze, between C16 3-OH and day time and night time breathlessness, between cockroach allergens and doctors diagnosed asthma. Moreover there were negative associations between amount of fine dust, total endotoxin (LPS) and respiratory infections. In conclusion, endotoxin at school seems to be mainly protective for respiratory illness but different types of endotoxin could have different effects. Fungal contamination measured as ergosterol and Aspergillus versicolor DNA can be risk factors for respiratory illness. The ethnical differences for atopy and asthma deserve further attention.
    Matched MeSH terms: DNA, Fungal/analysis*
  9. Siddiquee S, Yusof NA, Salleh AB, Abu Bakar F, Heng LY
    Bioelectrochemistry, 2010 Aug;79(1):31-6.
    PMID: 19945357 DOI: 10.1016/j.bioelechem.2009.10.004
    A new electrochemical biosensor is described for voltammetric detection of gene sequence related to Trichoderma harzianum. The sensor involves immobilization of a 20 base single-stranded probe (ssDNA), which is complementary to a specific gene sequence related to T. harzianum on a gold electrode through specific adsorption. The DNA probe was used to determine the amount of target gene in solution using methylene blue (MB) as the electrochemical indicator. The covalently immobilized probe could selectively hybridize with the target DNA to form a hybrid on the surface despite the bases being attached to the electrode. The changes in the peak currents of methylene blue (MB), an electroactive label, were observed upon hybridization of probe with the target. Peak currents were found to increase in the following order: hybrid-modified AuE and the probe-modified AuE which localized to the affinity of MB. Control experiments with the non-complementary oligonucleotides were performed to assess whether the DNA biosensor responds selectively, via hybridization, to the target. DNA biosensor also able to detect microorganism at the species levels without nucleic acid amplification. The redox current was linearly related to the concentration of target oligonucleotide DNA, ranged from 1-20 ppm. Numerous factors, affecting the probe immobilization, target hybridization and indicator binding reactions are optimized to maximize the sensitivity and reduce the assay time.
    Matched MeSH terms: DNA, Fungal/analysis*
  10. Lachance MA, Bowles JM, Wiens F, Dobson J, Ewing CP
    Int J Syst Evol Microbiol, 2006 Oct;56(Pt 10):2489-2493.
    PMID: 17012584 DOI: 10.1099/ijs.0.64452-0
    A novel species, Metschnikowia orientalis sp. nov., is described for haploid, heterothallic yeasts isolated from nitidulid beetles sampled in flowers in Rarotonga in the Cook Islands, and the Cameron Highlands of Malaysia. As evidenced by analysis of D1/D2 large subunit rDNA sequences, the species is related to Candida hawaiiana, to which it is similar in growth responses. Cylindrical, conjugated asci and acicular ascospores of moderate size are formed. Rudimentary mating reactions were observed with Metschnikowia aberdeeniae and Metschnikowia continentalis, but not with C. hawaiiana. The type strain of M. orientalis is UWOPS 99-745.6(T) (h(+)) (=CBS 10331(T)=NRRL Y-27991(T)) and the designated allotype is UWOPS 05-269.1 (h(-)) (=CBS 10330=NRRL Y-27992).
    Matched MeSH terms: DNA, Fungal/analysis
  11. Norbäck D, Hashim JH, Cai GH, Hashim Z, Ali F, Bloom E, et al.
    PLoS One, 2016;11(2):e0147996.
    PMID: 26829324 DOI: 10.1371/journal.pone.0147996
    There are few studies on rhinitis and sick building syndrome (SBS) among students in tropical countries. We studied associations between levels of five fungal DNA sequences, two mycotoxins (sterigmatocystin and verrucarol) and cat allergen (Fel d 1) levels in schools and rhinitis and other weekly SBS symptoms in the students. Fungal DNA was measured by quantitative PCR and cat allergen by ELISA. Pupils (N = 462) from eight randomly selected schools in Johor Bahru, Malaysia participated (96%). Dust samples were collected by cotton swabs and Petri dishes exposed for one week. None of the schools had a mechanical ventilation system, but all classrooms had openable windows that were kept open during lectures and indoor CO2 levels were low (mean 492 ppm; range 380-690 ppm). Weekly nasal symptoms (rhinitis) (18.8%), ocular (11.6%), throat (11.1%), dermal symptoms, headache (20.6%) and tiredness (22.1%) were common. Total fungal DNA in swab samples was associated with rhinitis (p = 0.02), ocular symptoms (p = 0.009) and tiredness (p = 0.001). There were positive associations between Aspergillus versicolor DNA in Petri dish samples, ocular symptoms (p = 0.02) and tiredness (p = 0.001). The level of the mycotoxin verrucarol (produced by Stachybotrys chartarum) in swab samples was positively associated with tiredness (p = 0.04). Streptomyces DNA in swab samples (p = 0.03) and Petri dish samples (p = 0.03) were negatively associated with tiredness. In conclusion, total fungal contamination, measured as total fungal DNA) in the classrooms, Aspergillus versicolor and verrucarol can be risk factors for rhinitis and SBS symptoms among students in the tropical country Malaysia.
    Matched MeSH terms: DNA, Fungal/analysis*
  12. Norbäck D, Hashim JH, Hashim Z, Sooria V, Ismail SA, Wieslander G
    Int J Hyg Environ Health, 2017 06;220(4):697-703.
    PMID: 28254266 DOI: 10.1016/j.ijheh.2017.01.016
    BACKGROUND: There are few studies on ocular effects of indoor mould exposure in schools, especially in the tropics OBJECTIVE: To study associations between eye symptoms and tear film break up time (BUT) in students and demographic data and fungal DNA in schools.

    METHODS: A school environment study was performed among randomly selected students in eight randomly selected secondary schools in Penang, Malaysia. Information on eye symptoms and demographic data was collected by a standardised questionnaire. BUT was measured by two methods, self-reported BUT (SBUT) and by the non-invasive Tearscope (NIBUT). Dust was collected by vacuuming in 32 classrooms and analysed for five fungal DNA sequences. Geometric mean (GM) for total fungal DNA was 7.31*104 target copies per gram dust and for Aspergillus/Penicillium DNA 3.34*104 target copies per gram dust. Linear mixed models and 3-level multiple logistic regression were applied adjusting for demographic factors.

    RESULTS: A total of 368 students (58%) participated and 17.4% reported weekly eye symptoms the last 3 months. The median SBUT and TBUT were 15 and 12s, respectively. Students wearing glasses (OR 2.41, p=0.01) and with a history of atopy (OR=2.67; p=0.008) had more eye symptoms. Girls had less eye symptoms than boys (OR=0.34; p=0.006) Indoor carbon dioxide in the classrooms was low (range 380-720ppm), temperature was 25-30°C and relative air humidity 70-88%. Total fungal DNA in vacuumed dust was associated with shorter SBUT (4s shorter per 105 target copies per gram dust; p=0.04) and NIBUT (4s shorter per 105 target copies per gram dust; p<0.001). Aspergillus/Penicillium DNA was associated with shorter NIBUT (5s shorter per 105 target copies per gram dust; p=0.01).

    CONCLUSION: Fungal contamination in schools in a tropical country can be a risk factor for impaired tear film stability among students.

    Matched MeSH terms: DNA, Fungal/analysis*
  13. Hazalin NA, Ramasamy K, Lim SM, Cole AL, Majeed AB
    Phytomedicine, 2012 May 15;19(7):609-17.
    PMID: 22397996 DOI: 10.1016/j.phymed.2012.01.007
    Endophytic fungi have been shown to be a promising source of biologically active natural products. In the present study, extracts of four endophytic fungi isolated from plants of the National Park, Pahang were evaluated for their cytotoxic activity and the nature of their active compounds determined. Those extracts exhibiting activity with IC(50) values less than 17 μg/ml against HCT116, MCF-7 and K562 cell lines were shown to induce apoptosis in these cell lines. Molecular analysis, based on sequences of the rDNA internal transcribed spacers ITS1 and ITS4, revealed all four endophytic fungi to be ascomycetes: three sordariomycetes and a dothideomycete. Six known compounds, cytochalasin J, dechlorogriseofulvin, demethylharzianic-acid, griseofulvin, harzianic acid and 2-hexylidene-3-methyl-succinic acid were identified from a rapid dereplication technique for fungal metabolites using an in-house UV library. The results from the present study suggest the potential of endophytic fungi as cytotoxic agents, and there is an indication that the isolates contain bioactive compounds that mainly kill cancer cells by apoptosis.
    Matched MeSH terms: DNA, Fungal/analysis
  14. Cai GH, Hashim JH, Hashim Z, Ali F, Bloom E, Larsson L, et al.
    Pediatr Allergy Immunol, 2011 May;22(3):290-7.
    PMID: 21457336 DOI: 10.1111/j.1399-3038.2010.01127.x
    While there is a large variation of prevalence of asthma symptoms worldwide, what we do know is that it is on the rise in developing countries. However, there are few studies on allergens, moulds and mycotoxin exposure in schools in tropical countries. The aims were to measure selected fungal DNA, furry pet allergens and mycotoxins in dust samples from schools in Malaysia and to study associations with pupils' respiratory health effects. Eight secondary schools and 32 classrooms in Johor Bahru, Malaysia were randomly selected. A questionnaire with standardized questions was used for health assessment in 15 randomly selected pupils from each class. The school buildings were inspected and both indoor and outdoor climate were measured. Dust samples were collected by cotton swabs and Petri dishes for fungal DNA, mycotoxins and allergens analysis. The participation rate was 96% (462/480 invited pupils), with a mean age of 14 yr (range 14-16). The pupils mostly reported daytime breathlessness (41%), parental asthma or allergy (22%), pollen or pet allergy (21%) and doctor-diagnosed asthma (13%) but rarely reported night-time breathlessness (7%), asthma in the last 12 months (3%), medication for asthma (4%) or smoking (5%). The inspection showed that no school had any mechanical ventilation system, but all classrooms had openable windows that were kept open during lectures. The mean building age was 16 yr (range 3-40) and the mean indoor and outdoor CO(2) levels were 492 ppm and 408 ppm, respectively. The mean values of indoor and outdoor temperature and relative humidity were the same, 29°C and 70% respectively. In cotton swab dust samples, the Geometric Mean (GM) value for total fungal DNA and Aspergillus/Penicillium (Asp/Pen) DNA in swab samples (Cell Equivalents (CE)/m(2)) was 5.7*10(8) and 0.5*10(8), respectively. The arithmetic mean (CE/m(2)) for Aspergillus versicolor DNA was 8780, Stachybotrys chartarum DNA was 26 and Streptomyces DNA was 893. The arithmetic means (pg/m(2)) for the mycotoxins sterigmatocystin and verrucarol were 2547 and 17, respectively. In Petri dish dust samples, the GM value for total fungal DNA and Asp/Pen DNA (CE/m(2) per day) was 9.2*10(6) and 1.6*10(6), respectively. The arithmetic mean (CE/m(2) per day) for A. versicolor DNA was 1478, S. chartarum DNA was 105 and Streptomyces DNA was 1271, respectively. The GM value for cat (Fel d1) allergen was 5.9 ng/m(2) per day. There were positive associations between A. versicolor DNA, wheeze and daytime breathlessness and between Streptomyces DNA and doctor-diagnosed asthma. However, the associations were inverse between S. chartarum DNA and daytime breathlessness and between verrucarol and daytime breathlessness. In conclusion, fungal DNA and cat allergen contamination were common in schools from Malaysia and there was a high prevalence of respiratory symptoms among pupils. Moreover, there were associations between levels of some fungal DNA and reported respiratory health in the pupils.
    Matched MeSH terms: DNA, Fungal/analysis*
  15. Chan GF, Puad MS, Chin CF, Rashid NA
    Folia Microbiol (Praha), 2011 Sep;56(5):459-67.
    PMID: 21909832 DOI: 10.1007/s12223-011-0070-9
    Despite the great importance of Aureobasidium pullulans in biotechnology, the fungus had emerged as an opportunistic human pathogen, especially among immunocompromised patients. Clinical detection of this rare human fungal pathogen presently relies on morphology diagnosis which may be misleading. Thus, a sensitive and accurate quantitative molecular assay for A. pullulans remains lacking. In this study, we presented the microscopy observations of A. pullulans that reveals the phenotypic plasticity of the fungus. A. pullulans-specific primers and molecular beacon probes were designed based on the fungal 18S ribosomal RNA (rRNA) gene. Comparison of two probes with varied quencher chemistry, namely BHQ-1 and Tamra, revealed high amplification efficiency of 104% and 108%, respectively. The optimized quantitative real-time PCR (qPCR) assays could detect and quantify up to 1 pg concentration of A. pullulans DNA. Both assays displayed satisfactory performance parameters at fast thermal cycling mode. The molecular assay has great potential as a molecular diagnosis tool for early detection of fungal infection caused by A. pullulans, which merits future study in clinical diagnosis.
    Matched MeSH terms: DNA, Fungal/analysis*
  16. Chew FLM, Subrayan V, Chong PP, Goh MC, Ng KP
    Jpn. J. Ophthalmol., 2009 Nov;53(6):657-659.
    PMID: 20020251 DOI: 10.1007/s10384-009-0722-3
    Matched MeSH terms: DNA, Fungal/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links