Displaying publications 1 - 20 of 84 in total

Abstract:
Sort:
  1. Adamowicz SJ, Chain FJ, Clare EL, Deiner K, Dincă V, Elías-Gutiérrez M, et al.
    Genome, 2016 Sep;59(9):v-ix.
    PMID: 27611699 DOI: 10.1139/gen-2016-0159
    Matched MeSH terms: DNA Barcoding, Taxonomic*
  2. Hew YX, Ya'cob Z, Adler PH, Chen CD, Lau KW, Sofian-Azirun M, et al.
    Parasit Vectors, 2023 Jul 22;16(1):248.
    PMID: 37480109 DOI: 10.1186/s13071-023-05875-1
    BACKGROUND: DNA barcoding is a valuable taxonomic tool for rapid and accurate species identification and cryptic species discovery in black flies. Indonesia has 143 nominal species of black flies, but information on their biological aspects, including vectorial capacity and biting habits, remains underreported, in part because of identification problems. The current study represents the first comprehensive DNA barcoding of Indonesian black flies using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences.

    METHODS: Genomic DNA of Indonesian black fly samples were extracted and sequenced, producing 86 COI sequences in total. Two hundred four COI sequences, including 118 GenBank sequences, were analysed. Maximum likelihood (ML) and Bayesian inference (BI) trees were constructed and species delimitation analyses, including ASAP, GMYC and single PTP, were performed to determine whether the species of Indonesian black flies could be delineated. Intra- and interspecific genetic distances were also calculated and the efficacy of COI sequences for species identification was tested.

    RESULTS: The DNA barcodes successfully distinguished most morphologically distinct species (> 80% of sampled taxa). Nonetheless, high maximum intraspecific distances (3.32-13.94%) in 11 species suggested cryptic diversity. Notably, populations of the common taxa Simulium (Gomphostilbia) cheongi, S. (Gomphostilbia) sheilae, S. (Nevermannia) feuerborni and S. (Simulium) tani in the islands of Indonesia were genetically distinct from those on the Southeast Asian mainland (Malaysia and Thailand). Integrated morphological, cytogenetic and nuclear DNA studies are warranted to clarify the taxonomic status of these more complex taxa.

    CONCLUSIONS: The findings showed that COI barcoding is a promising taxonomic tool for Indonesian black flies. The DNA barcodes will aid in correct identification and genetic study of Indonesian black flies, which will be helpful in the control and management of potential vector species.

    Matched MeSH terms: DNA Barcoding, Taxonomic*
  3. Wilson JJ, Sing KW, Lee PS, Wee AK
    Conserv Biol, 2016 10;30(5):982-9.
    PMID: 27341687 DOI: 10.1111/cobi.12787
    Over the past 50 years, Tropical East Asia has lost more biodiversity than any tropical region. Tropical East Asia is a megadiverse region with an acute taxonomic impediment. DNA barcodes are short standardized DNA sequences used for taxonomic purposes and have the potential to lessen the challenges of biodiversity inventory and assessments in regions where they are most needed. We reviewed DNA barcoding efforts in Tropical East Asia relative to other tropical regions. We suggest DNA barcodes (or metabarcodes from next-generation sequencers) may be especially useful for characterizing and connecting species-level biodiversity units in inventories encompassing taxa lacking formal description (particularly arthropods) and in large-scale, minimal-impact approaches to vertebrate monitoring and population assessments through secondary sources of DNA (invertebrate derived DNA and environmental DNA). We suggest interest and capacity for DNA barcoding are slowly growing in Tropical East Asia, particularly among the younger generation of researchers who can connect with the barcoding analogy and understand the need for new approaches to the conservation challenges being faced.
    Matched MeSH terms: DNA Barcoding, Taxonomic*
  4. Chen YJ, Liu WJ, Chen DN, Chieng SH, Jiang L
    Zhongguo Zhong Yao Za Zhi, 2017 Dec;42(23):4593-4597.
    PMID: 29376257 DOI: 10.19540/j.cnki.cjcmm.20171030.018
    To provide theoretical basis for the traceability and quality evaluation of edible bird's nests (EBNs), the Cytb sequence was applied to identify the origin of EBNs. A total of 39 experiment samples were collected from Malaysia, Indonesia, Vietnam and Thailand. Genomic DNA was extracted for the PCR reaction. The amplified products were sequenced. 36 sequences were downloaded from Gen Bank including edible nest swiftlet, black nest swiftlet, mascarene swiftlet, pacific swiftlet and germain's swiftlet. MEGA 7.0 was used to analyze the distinction of sequences by the method of calculating the distances in intraspecific and interspecific divergences and constructing NJ and UPMGA phylogenetic tree based on Kimera-2-parameter model. The results showed that 39 samples were from three kinds of EBNs. Interspecific divergences were significantly greater than the intraspecific one. Samples could be successfully distinguished by NJ and UPMGA phylogenetic tree. In conclusion, Cytb sequence could be used to distinguish the origin of EBNs and it is efficient for tracing the origin species of EBNs.
    Matched MeSH terms: DNA Barcoding, Taxonomic*
  5. Fu Z, Piumsomboon A, Punnarak P, Uttayarnmanee P, Leaw CP, Lim PT, et al.
    Harmful Algae, 2021 06;106:102063.
    PMID: 34154784 DOI: 10.1016/j.hal.2021.102063
    Information on the diversity and distribution of harmful microalgae in the Gulf of Thailand is very limited and mainly based on microscopic observations. Here, we collected 44 water samples from the Gulf of Thailand and its adjacent water (Perhentian Island, Malaysia) for comparison in 2018. DNA metabarcoding was performed targeting the partial large subunit ribosomal RNA gene (LSU rDNA D1-D3) and the internal transcribed spacers (ITS1 and ITS2). A total of 50 dinoflagellate genera (made up of 72 species) were identified based on the LSU rDNA dataset, while the results of ITS1 and ITS2 datasets revealed 33 and 32 dinoflagellate genera comprising 69 and 64 species, respectively. Five potentially toxic Pseudo-nitzschia (Bacillariophyceae) species were detected, with four as newly recorded species in the water (Pseudo-nitzschia americana/brasilliana, Pseudo-nitzschia simulans/delicatissima, P. galaxiae and P. multistriata). The highest relative abundances of P. galaxiae and P. multistriata were found in Trat Bay and Chumphon (accounting for 0.20% and 0.06% of total ASVs abundance, respectively). Three paralytic shellfish toxin producing dinoflagellate species were detected: Alexandrium tamiyavanichii, Alexandrium fragae, and Gymnodinium catenatum. The highest abundance of A. tamiyavanichii was found in the surface sample of Chumphon (CHO7 station), accounting for 1.95% of total ASVs abundance. Two azaspiracid producing dinoflagellate species, Azadinium poporum ribotype B, Azadinium spinosum ribotype A, and a pinnatoxin producing dinoflagellate species Vulcanodinium rugosum, with two ribotypes B and C, were revealed from the datasets although with very low abundances. Six fish killing dinoflagellate species, including Margalefidinium polykrikoides group IV, Margalefidinium fulvescens, Karenia mikimotoi, Karenia selliformis ribotype B, Karlodinium australe, and Karlodinium digitatum were detected and all representing new records in this area. The findings of numerous harmful microalgal species in the Gulf of Thailand highlight the potential risk of human intoxication and fish killing events.
    Matched MeSH terms: DNA Barcoding, Taxonomic
  6. Wilson JJ, Sing KW, Halim MR, Ramli R, Hashim R, Sofian-Azirun M
    Genet. Mol. Res., 2014;13(1):920-5.
    PMID: 24634112 DOI: 10.4238/2014.February.19.2
    Bats are important flagship species for biodiversity research; however, diversity in Southeast Asia is considerably underestimated in the current checklists and field guides. Incorporation of DNA barcoding into surveys has revealed numerous species-level taxa overlooked by conventional methods. Inclusion of these taxa in inventories provides a more informative record of diversity, but is problematic as these species lack formal description. We investigated how frequently documented, but undescribed, bat taxa are encountered in Peninsular Malaysia. We discuss whether a barcode library provides a means of recognizing and recording these taxa across biodiversity inventories. Tissue was sampled from bats trapped at Pasir Raja, Dungun Terengganu, Peninsular Malaysia. The DNA was extracted and the COI barcode region amplified and sequenced. We identified 9 species-level taxa within our samples, based on analysis of the DNA barcodes. Six specimens matched to four previously documented taxa considered candidate species but currently lacking formal taxonomic status. This study confirms the high diversity of bats within Peninsular Malaysia (9 species in 13 samples) and demonstrates how DNA barcoding allows for inventory and documentation of known taxa lacking formal taxonomic status.
    Matched MeSH terms: DNA Barcoding, Taxonomic*
  7. Mat Jaafar TN, Taylor MI, Mohd Nor SA, de Bruyn M, Carvalho GR
    PLoS One, 2012;7(11):e49623.
    PMID: 23209586 DOI: 10.1371/journal.pone.0049623
    DNA barcodes, typically focusing on the cytochrome oxidase I gene (COI) in many animals, have been used widely as a species-identification tool. The ability of DNA barcoding to distinguish species from a range of taxa and to reveal cryptic species has been well documented. Despite the wealth of DNA barcode data for fish from many temperate regions, there are relatively few available from the Southeast Asian region. Here, we target the marine fish Family Carangidae, one of the most commercially-important families from the Indo-Malay Archipelago (IMA), to produce an initial reference DNA barcode library.
    Matched MeSH terms: DNA Barcoding, Taxonomic*
  8. Chee SY
    Genet. Mol. Res., 2015;14(2):5677-84.
    PMID: 26125766 DOI: 10.4238/2015.May.25.20
    The mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) gene has been universally and successfully utilized as a barcoding gene, mainly because it can be amplified easily, applied across a wide range of taxa, and results can be obtained cheaply and quickly. However, in rare cases, the gene can fail to distinguish between species, particularly when exposed to highly sensitive methods of data analysis, such as the Bayesian method, or when taxa have undergone introgressive hybridization, over-splitting, or incomplete lineage sorting. Such cases require the use of alternative markers, and nuclear DNA markers are commonly used. In this study, a dendrogram produced by Bayesian analysis of an mtDNA COI dataset was compared with that of a nuclear DNA ATPS-α dataset, in order to evaluate the efficiency of COI in barcoding Malaysian nerites (Neritidae). In the COI dendrogram, most of the species were in individual clusters, except for two species: Nerita chamaeleon and N. histrio. These two species were placed in the same subcluster, whereas in the ATPS-α dendrogram they were in their own subclusters. Analysis of the ATPS-α gene also placed the two genera of nerites (Nerita and Neritina) in separate clusters, whereas COI gene analysis placed both genera in the same cluster. Therefore, in the case of the Neritidae, the ATPS-α gene is a better barcoding gene than the COI gene.
    Matched MeSH terms: DNA Barcoding, Taxonomic*
  9. Wong MM, Lim CL, Wilson JJ
    Bull. Entomol. Res., 2015 Aug;105(4):515-20.
    PMID: 25913190 DOI: 10.1017/S0007485315000358
    Chinese knotweed (Persicaria chinensis) is of ecological and economic importance as a high-risk invasive species and a traditional medicinal herb. However, the insects associated with P. chinensis pollination have received scant attention. As a widespread invasive plant we would expect P. chinensis to be associated with a diverse group of insect pollinators, but lack of taxonomic identification capacity is an impediment to confirm this expectation. In the present study we aimed to elucidate the insect pollinators of P. chinensis in peninsular Malaysia using DNA barcoding. Forty flower visitors, representing the range of morphological diversity observed, were captured at flowers at Ulu Kali, Pahang, Malaysia. Using Automated Barcode Gap Discovery, 17 morphospecies were assigned to 23 species representing at least ten families and four orders. Using the DNA barcode library (BOLD) 30% of the species could be assigned a species name, and 70% could be assigned a genus name. The insects visiting P. chinensis were broadly similar to those previously reported as visiting Persicaria japonica, including honey bees (Apis), droneflies (Eristalis), blowflies (Lucilia) and potter wasps (Eumedes), but also included thrips and ants.
    Matched MeSH terms: DNA Barcoding, Taxonomic*
  10. Heckenhauer J, Abu Salim K, Chase MW, Dexter KG, Pennington RT, Tan S, et al.
    PLoS One, 2017;12(10):e0185861.
    PMID: 29049301 DOI: 10.1371/journal.pone.0185861
    DNA barcoding is a fast and reliable tool to assess and monitor biodiversity and, via community phylogenetics, to investigate ecological and evolutionary processes that may be responsible for the community structure of forests. In this study, DNA barcodes for the two widely used plastid coding regions rbcL and matK are used to contribute to identification of morphologically undetermined individuals, as well as to investigate phylogenetic structure of tree communities in 70 subplots (10 × 10m) of a 25-ha forest-dynamics plot in Brunei (Borneo, Southeast Asia). The combined matrix (rbcL + matK) comprised 555 haplotypes (from ≥154 genera, 68 families and 25 orders sensu APG, Angiosperm Phylogeny Group, 2016), making a substantial contribution to tree barcode sequences from Southeast Asia. Barcode sequences were used to reconstruct phylogenetic relationships using maximum likelihood, both with and without constraining the topology of taxonomic orders to match that proposed by the Angiosperm Phylogeny Group. A third phylogenetic tree was reconstructed using the program Phylomatic to investigate the influence of phylogenetic resolution on results. Detection of non-random patterns of community assembly was determined by net relatedness index (NRI) and nearest taxon index (NTI). In most cases, community assembly was either random or phylogenetically clustered, which likely indicates the importance to community structure of habitat filtering based on phylogenetically correlated traits in determining community structure. Different phylogenetic trees gave similar overall results, but the Phylomatic tree produced greater variation across plots for NRI and NTI values, presumably due to noise introduced by using an unresolved phylogenetic tree. Our results suggest that using a DNA barcode tree has benefits over the traditionally used Phylomatic approach by increasing precision and accuracy and allowing the incorporation of taxonomically unidentified individuals into analyses.
    Matched MeSH terms: DNA Barcoding, Taxonomic/methods*
  11. Jomkumsing P, Tangkawanit U, Wongpakam K, Pramual P
    Acta Trop, 2019 Aug;196:22-29.
    PMID: 31059708 DOI: 10.1016/j.actatropica.2019.05.001
    Black flies (Simuliidae) are important biting insects and vectors of diseases agents of humans and livestock. Thus, understanding the taxonomy and biodiversity of these insects is crucial for control and management of these diseases. In this study, we used mitochondrial cytochrome c oxidase I sequences to examine genetic diversity of three human-biting and possible vector black fly taxa; the Simulium asakoae species-complex, S. chamlongi and S. nigrogilvum. High levels of genetic diversity (>3.5% intraspecific genetic divergence) were found in all three taxa. Phylogenetic analyses indicated that the S. asakoae complex can be divided into seven groups with the largest group consisting of specimens from Thailand, Malaysia and Myanmar. This group most likely represents true S. asakoae. The remaining haplotypes formed groups with conspecific haplotypes or with other closely related species. Among these groups, one including S. monglaense and another including S. myanmarense suggest that certain specimens identified as S. asakoae most likely belong to those species. Therefore, they constitute new locality records for Thailand and also represent new records of anthropophily. Members of S. chamlongi are not monophyletic as its clade also included S. hackeri. A median joining network revealed strong geographic associations of the haplotypes of S. nigrogilvum suggesting limitation of gene flow. Because this species occurs mainly in high elevation habitats, low land areas could present a barrier to gene flow.
    Matched MeSH terms: DNA Barcoding, Taxonomic*
  12. Chan KO, Grismer LL, Brown RM
    Mol Phylogenet Evol, 2018 10;127:1010-1019.
    PMID: 30030179 DOI: 10.1016/j.ympev.2018.07.005
    The family Rhacophoridae is one of the most diverse amphibian families in Asia, for which taxonomic understanding is rapidly-expanding, with new species being described steadily, and at increasingly finer genetic resolution. Distance-based methods frequently have been used to justify or at least to bolster the recognition of new species, particularly in complexes of "cryptic" species where obvious morphological differentiation does not accompany speciation. However, there is no universally-accepted threshold to distinguish intra- from interspecific genetic divergence. Moreover, indiscriminant use of divergence thresholds to delimit species can result in over- or underestimation of species diversity. To explore the range of variation in application of divergence scales, and to provide a family-wide assessment of species-level diversity in Old-World treefrogs (family Rhacophoridae), we assembled the most comprehensive multi-locus phylogeny to date, including all 18 genera and approximately 247 described species (∼60% coverage). We then used the Automatic Barcode Gap Discovery (ABGD) method to obtain different species-delimitation schemes over a range of prior intraspecific divergence limits to assess the consistency of divergence thresholds used to demarcate current species boundaries. The species-rich phylogeny was able to identify a number of taxonomic errors, namely the incorrect generic placement of Chiromantis inexpectatus, which we now move to the genus Feihyla, and the specific identity of Rhacophorus bipunctatus from Peninsular Malaysia, which we tentatively reassign to R. rhodopus. The ABGD analysis demonstrated overlap between intra- and interspecific divergence limits: genetic thresholds used in some studies to synonymize taxa have frequently been used in other studies to justify the recognition of new species. This analysis also highlighted numerous groups that could potentially be split or lumped, which we earmark for future examination. Our large-scale and en bloc approach to species-level phylogenetic systematics contributes to the resolution of taxonomic uncertainties, reveals possible new species, and identifies numerous groups that require critical examination. Overall, we demonstrate that the taxonomy and evolutionary history of Old-World tree frogs are far from resolved, stable or adequately characterized at the level of genus, species, and/or population.
    Matched MeSH terms: DNA Barcoding, Taxonomic/methods
  13. Aziz NMA, Esa Y, Arshad A
    J Environ Biol, 2016 07;37(4 Spec No):725-33.
    PMID: 28779732
    The present study was carried out to examine the species identification and phylogenetic relationships of groupers in Malaysia using mitochondrial Cytochrome c Oxidase I (COI) gene, commonly known as barcoding gene. A total of 63 individuals comprising 10 species from three genera were collected from the coastal areas of Johor, Kelantan, Pahang, Perak, Selangor and Terengganu. All the individuals were morphologically identified and molecular works involved polymerase chain reaction (PCR) and sequencing of COI barcoding fragment (655 base pairs). Results from the BLAST search showed that 55 sequences could be assigned to 10 grouper species with high percentage identity index (≥95% to 100%), while eight grouper individuals showed discrepancies in their taxonomic identification based on the morphology and the COI barcoding results. The histogram of distances showed that there was a clear-cut barcode gap present in the sequences indicating a clear separation between intraspecific and interspecific distances. The pairwise genetic distances showed lowest pairwise distance between P. leopardus and P. maculatus (4.4%), while the highest pairwise distance was between E. bleekeri and P. maculatus (23.5%), supporting their morphological and habitat similarities and differences. Phylogenetic analysis (Neighbor-Joining) showed the presence of two major clades (1) genus Epinephelus vs (2) genus Plectropomus and Cephalopholis). In conclusion, the present study has managed to show the accuracy of DNA barcoding method for species identification, and utilization of COI gene for phylogenetic study among groupers. ?
    Matched MeSH terms: DNA Barcoding, Taxonomic*
  14. Putt QY, Ya'cob Z, Adler PH, Chen CD, Hew YX, Izwan-Anas N, et al.
    Parasit Vectors, 2023 Aug 07;16(1):266.
    PMID: 37545007 DOI: 10.1186/s13071-023-05892-0
    BACKGROUND: Prompt and precise identification of black flies (Simuliidae) is crucial, given their biting behaviour and significant impact on human and animal health. To address the challenges presented by morphology and chromosomes in black fly taxonomy, along with the limited availability of molecular data pertaining to the black fly fauna in Vietnam, this study employed DNA-based approaches. Specifically, we used mitochondrial and nuclear-encoded genes to distinguish nominal species of black flies in Vietnam.

    METHODS: In this study, 135 mitochondrial cytochrome c oxidase subunit I (COI) sequences were established for 45 species in the genus Simulium in Vietnam, encompassing three subgenera (Gomphostilbia, Nevermannia, and Simulium), with 64 paratypes of 27 species and 16 topotypes of six species. Of these COI sequences, 71, representing 27 species, are reported for the first time.

    RESULTS: Combined with GenBank sequences of specimens from Malaysia, Myanmar, Thailand, and Vietnam, a total of 234 DNA barcodes of 53 nominal species resulted in a 71% success rate for species identification. Species from the non-monophyletic Simulium asakoae, S. feuerborni, S. multistriatum, S. striatum, S. tuberosum, and S. variegatum species groups were associated with ambiguous or incorrect identifications. Pairwise distances, phylogenetics, and species delimitation analyses revealed a high level of cryptic diversity, with discovery of 15 cryptic taxa. The current study also revealed the limited utility of a fast-evolving nuclear gene, big zinc finger (BZF), in discriminating closely related, morphologically similar nominal species of the S. asakoae species group.

    CONCLUSION: This study represents the first comprehensive molecular genetic analysis of the black fly fauna in Vietnam to our knowledge, providing a foundation for future research. DNA barcoding exhibits varying levels of differentiating efficiency across species groups but is valuable in the discovery of cryptic diversity.

    Matched MeSH terms: DNA Barcoding, Taxonomic/methods
  15. Li W, Ren Q, Feng J, Lee SY, Liu Y
    PLoS One, 2024;19(1):e0297164.
    PMID: 38241246 DOI: 10.1371/journal.pone.0297164
    Deer products from sika deer (Cervus nippon) and red deer (C. elaphus) are considered genuine and used for Traditional Chinese Medicine (TCM) materials in China. Deer has a very high economic and ornamental value, resulting in the formation of a characteristic deer industry in the prescription preparation of traditional Chinese medicine, health food, cosmetics, and other areas of development and utilization. Due to the high demand for deer products, the products are expensive and have limited production, but the legal use of deer is limited to only two species of sika deer and red deer; other wild deer are prohibited from hunting, so there are numerous cases of mixing and adulteration of counterfeit products and so on. There have been many reports that other animal (pig, cow, sheep, etc.) tissues or organs are often used for adulteration and confusion, resulting in poor efficacy of deer traditional medicine and trade fraud in deer products. To authenticate the deer products in a rapid and effective manner, the analysis used 22 deer products (antler, meat, bone, fetus, penis, tail, skin, and wool) that were in the form of blind samples. Total DNA extraction using a modified protocol successfully yielded DNA from the blind samples that was useful for PCR. Three candidate DNA barcoding loci, cox1, Cyt b, and rrn12, were evaluated for their discrimination strength through BLAST and phylogenetic clustering analyses. For the BLAST analysis, the 22 blind samples obtained 100% match identity across the three gene loci tested. It was revealed that 12 blind samples were correctly labeled for their species of origin, while three blind samples that were thought to originate from red deer were identified as C. nippon, and seven blind samples that were thought to originate from sika deer were identified as C. elaphus, Dama dama, and Rangifer tarandus. DNA barcoding analysis showed that all three gene loci were able to distinguish the two Cervus species and to identify the presence of adulterant species. The DNA barcoding technique was able to provide a useful and sensitive approach in identifying the species of origin in deer products.
    Matched MeSH terms: DNA Barcoding, Taxonomic*
  16. Lim VC, Ramli R, Bhassu S, Wilson JJ
    PLoS One, 2017;12(7):e0179555.
    PMID: 28742835 DOI: 10.1371/journal.pone.0179555
    Several published checklists of bat species have covered Peninsular Malaysia as part of a broader region and/or in combination with other mammal groups. Other researchers have produced comprehensive checklists for specific localities within the peninsula. To our knowledge, a comprehensive checklist of bats specifically for the entire geopolitical region of Peninsular Malaysia has never been published, yet knowing which species are present in Peninsular Malaysia and their distributions across the region are crucial in developing suitable conservation plans. Our literature search revealed that 110 bat species have been documented in Peninsular Malaysia; 105 species have precise locality records while five species lack recent and/or precise locality records. We retrieved 18 species from records dated before the year 2000 and seven species have only ever been recorded once. Our search of Barcode of Life Datasystems (BOLD) found that 86 (of the 110) species have public records of which 48 species have public DNA barcodes available from bats sampled in Peninsular Malaysia. Based on Neighbour-Joining tree analyses and the allocation of DNA barcodes to Barcode Index Number system (BINs) by BOLD, several DNA barcodes recorded under the same species name are likely to represent distinct taxa. We discuss these cases in detail and highlight the importance of further surveys to determine the occurences and resolve the taxonomy of particular bat species in Peninsular Malaysia, with implications for conservation priorities.
    Matched MeSH terms: DNA Barcoding, Taxonomic*
  17. Wilson JJ, Sing KW, Sofian-Azirun M
    PLoS One, 2013;8(11):e79969.
    PMID: 24282514 DOI: 10.1371/journal.pone.0079969
    The objective of this study was to build a DNA barcode reference library for the true butterflies of Peninsula Malaysia and assess the value of attaching subspecies names to DNA barcode records. A new DNA barcode library was constructed with butterflies from the Museum of Zoology, University of Malaya collection. The library was analysed in conjunction with publicly available DNA barcodes from other Asia-Pacific localities to test the ability of the DNA barcodes to discriminate species and subspecies. Analyses confirmed the capacity of the new DNA barcode reference library to distinguish the vast majority of species (92%) and revealed that most subspecies possessed unique DNA barcodes (84%). In some cases conspecific subspecies exhibited genetic distances between their DNA barcodes that are typically seen between species, and these were often taxa that have previously been regarded as full species. Subspecies designations as shorthand for geographically and morphologically differentiated groups provide a useful heuristic for assessing how such groups correlate with clustering patterns of DNA barcodes, especially as the number of DNA barcodes per species in reference libraries increases. Our study demonstrates the value in attaching subspecies names to DNA barcode records as they can reveal a history of taxonomic concepts and expose important units of biodiversity.
    Matched MeSH terms: DNA Barcoding, Taxonomic*
  18. Munian K, Ramli FF, Othman N, Mahyudin NAA, Sariyati NH, Abdullah-Fauzi NAF, et al.
    Mol Ecol Resour, 2024 May;24(4):e13936.
    PMID: 38419264 DOI: 10.1111/1755-0998.13936
    The approach of combining cost-effective nanopore sequencing and emerging environmental DNA (eDNA) metabarcoding could prove to be a promising tool for biodiversity documentation, especially in Malaysia. Given the substantial funding constraints in recent years, especially in relation to the country's biodiversity, many researchers have been limited to conduct restricted research without extended monitoring periods, potentially hindering comprehensive surveys and could compromise the conservation efforts. Therefore, the present study aimed to evaluate the application of eDNA metabarcoding on freshwater fish using short reads generated through nanopore sequencing. This assessment focused on species detection in three selected rivers within the Endau Rompin Landscape in Malaysia. Additionally, the study compared levels of species detection between eDNA metabarcoding and conventional sampling methods, examined the effectiveness of primer choice, and applied both metabarcoding and shotgun sequencing to the eDNA approach. We successfully identified a total of 22 and 71 species with an identification threshold of >97% and >90%, respectively, through the MinION platform. The eDNA metabarcoding approach detected over 13% more freshwater fish species than when the conventional method was used. Notably, the distinction in freshwater fish detection between eDNA primers for 12S rRNA and cytochrome oxidase I was insignificant. The cost for eDNA metabarcoding proved to be more effective compared to conventional sampling with cost reduction at 33.4%. With favourable cost-effectiveness and increased species detection, eDNA metabarcoding could complement existing methods, enhance holistic diversity documentation for targeted habitats and facilitate effective conservation planning.
    Matched MeSH terms: DNA Barcoding, Taxonomic/methods
  19. Sady H, Al-Mekhlafi HM, Webster BL, Ngui R, Atroosh WM, Al-Delaimy AK, et al.
    Parasit Vectors, 2015;8:544.
    PMID: 26482435 DOI: 10.1186/s13071-015-1168-8
    Human schistosomiasis is a neglected tropical disease of great importance that remains highly prevalent in Yemen, especially amongst rural communities. In order to investigate the genetic diversity of human Schistosoma species, a DNA barcoding study was conducted on S. mansoni and S. haematobium in Yemen.
    Matched MeSH terms: DNA Barcoding, Taxonomic
  20. Martin MB, Chakona A
    Zookeys, 2019;848:103-118.
    PMID: 31160881 DOI: 10.3897/zookeys.848.32211
    Enteromiuspallidus was described by Smith in 1841 without a designated type specimen for the species. Herein, we designate a specimen from the Baakens River system as a neotype for E.pallidus and provide a thorough description for this species to facilitate ongoing taxonomic revisions of southern African Enteromius. Enteromiuspallidus can be distinguished from the other minnows in the "goldie barb group" by having an incomplete lateral line, lack of distinct chevron or tubular markings around lateral line pores, absence of a distinct lateral stripe, absence of wavy parallel lines along scale rows and lack of black pigmentation around the borders of the scales. We provide mtDNA COI sequences for the neotype and an additional specimen from the Baakens River as DNA barcodes of types and topotypes are a fundamental requirement for further taxonomic studies.
    Matched MeSH terms: DNA Barcoding, Taxonomic
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links