Displaying publications 1 - 20 of 224 in total

  1. Asif M, Yousaf HM, Saleem M, Hussain L, Mahrukh, Zarzour RA, et al.
    Curr Pharm Biotechnol, 2022;23(5):728-739.
    PMID: 34225619 DOI: 10.2174/1389201022666210702120956
    BACKGROUND: Raphanus sativus is traditionally used as an anti-inflammatory agent.

    OBJECTIVES: The current study was designed to explore the in vivo anti-inflammatory and antiangiogenic properties of Raphanus sativus seeds oil.

    METHODS: Cold press method was used for the extraction of oil (RsSO) and was characterised by using GC-MS techniques. Three in vitro antioxidant assays (DPPH, ABTS and FRAP) were performed to explore the antioxidant potential of RsSO. Disc diffusion methods were used to study in vitro antimicrobial properties. In vivo anti-inflammatory properties were studied in both acute and chronic inflammation models. In vivo chicken chorioallantoic membrane assay was performed to study antiangiogenic effects. Molecular mechanisms were identified using TNF-α ELISA kit and docking tools.

    RESULTS: GC-MS analysis of RsSO revealed the presence of hexadecanoic and octadecanoic acid. Findings of DPPH, ABTS, and FRAP models indicated relatively moderate radical scavenging properties of RsSO. Oil showed antimicrobial activity against a variety of bacterial and fungal strains tested. Data of inflammation models showed significant (p < 0.05) anti-inflammatory effects of RsSO in both acute and chronic models. 500 mg/kg RsSO halted inflammation development significantly better (p < 0.05) as compared with lower doses. Histopathological evaluations of paws showed minimal infiltration of inflammatory cells in RsSO-treated animals. Findings of TNF-α ELSIA and docking studies showed that RsSO has the potential to down-regulate the expression of TNF-α, iNOS, ROS, and NF-κB respectively. Moreover, RsSO showed in vivo antiangiogenic effects.

    CONCLUSION: Data of the current study highlight that Raphanus sativus seeds oil has anti-inflammatory, and antiangiogenic properties and can be used as an adjunct to standard NSAIDs therapy which may reduce the dose and related side effects.

    Matched MeSH terms: Down-Regulation
  2. Ayub Khan SM, Few LL, See Too WC
    Mol Med Rep, 2018 May;17(5):7442-7450.
    PMID: 29568919 DOI: 10.3892/mmr.2018.8762
    Choline kinase (CK) is the first enzyme in the CDP-choline pathway for the synthesis of phosphatidylcholine, the most abundant phospholipid in the mammalian cell membrane. This enzyme exists as three isozymes (α1, α2 and β) and the CKα isozyme has been implicated in cancer pathogenesis. Inhibition of CK activity has been proposed for cancer therapies. MicroRNAs (miRNAs/miRs) are non‑coding RNAs that serve important roles in diverse biological pathways and human diseases, including cancer. However, the regulation of CKα gene expression by miRNAs has never been investigated, to the best of the authors' knowledge. In the present study, two miRNA mimics, miR‑876‑5p and miR‑646, were transfected into the HepG2 cell line and the effect of these miRNAs on the levels of CKα mRNA were determined by reverse transcription‑quantitative polymerase chain reaction. Cells transfected with 25 nM miR‑876‑5p for 48 h exhibited significantly lower levels of CKα mRNA. Following optimization, miR‑876‑5p caused four times lower levels of CKα mRNA compared to the negative control. Effects of the miRNAs on HepG2 cell viability and cellular morphology were additionally analyzed using an MTT cell viability assay and scanning electron microscopy, respectively. HepG2 cells that were transfected with the optimum concentration of miR‑876‑5p for the optimum duration exhibited 25% lower viability than negative control and signs of apoptosis in electron micrographs. The results suggested miR‑876‑5p as a potential miRNA modulator of CKα expression in the cells, and may be relevant for the design of more effective anticancer strategy targeting CK.
    Matched MeSH terms: Down-Regulation*
  3. Haris K, Ismail S, Idris Z, Abdullah JM, Yusoff AA
    Asian Pac J Cancer Prev, 2014;15(11):4499-505.
    PMID: 24969876
    Glioblastoma, the most aggressive and malignant form of glioma, appears to be resistant to various chemotherapeutic agents. Hence, approaches have been intensively investigated to targeti specific molecular pathways involved in glioblastoma development and progression. Aloe emodin is believed to modulate the expression of several genes in cancer cells. We aimed to understand the molecular mechanisms underlying the therapeutic effect of Aloe emodin on gene expression profiles in the human U87 glioblastoma cell line utilizing microarray technology. The gene expression analysis revealed that a total of 8,226 gene alterations out of 28,869 genes were detected after treatment with 58.6 μg/ml for 24 hours. Out of this total, 34 genes demonstrated statistically significant change (p<0.05) ranging from 1.07 to 1.87 fold. The results revealed that 22 genes were up-regulated and 12 genes were down-regulated in response to Aloe emodin treatment. These genes were then grouped into several clusters based on their biological functions, revealing induction of expression of genes involved in apoptosis (programmed cell death) and tissue remodelling in U87 cells (p<0.01). Several genes with significant changes of the expression level e.g. SHARPIN, BCAP31, FIS1, RAC1 and TGM2 from the apoptotic cluster were confirmed by quantitative real-time PCR (qRT-PCR). These results could serve as guidance for further studies in order to discover molecular targets for the cancer therapy based on Aloe emodin treatment.
    Matched MeSH terms: Down-Regulation/drug effects; Down-Regulation/genetics
  4. Mariani Mohd Zain, Zary Shariman Yahaya, Nik Ahmad Irwan Izzauddin Nik Him
    Trop Life Sci Res, 2016;27(11):3-8.
    To date, the ivermectin resistance in nematode parasites has been reported
    and many studies are carried out to determine the causes of this problem. A free-living
    Caenorhabditis elegans is used as a model system for this study to investigate the
    response of C. elegans to ivermectin exposure by using larval development assay. Worms
    were exposed to ivermectin at concentration from 1 ng/mL to 10 ng/mL and dimethyl
    sulphoxide (DMSO) as a control. The developments of the worms were monitored for 24,
    48, 72, and 96 hours until the worms become adults. Results indicated that worms’ growth
    began to be affected by ivermectin at a concentration of 5 ng/mL, while at the
    concentration of 6, 7, 8, 9, and 10 ng/mL, the growth of worms were inhibited compared to
    control worms. Further study of the protein expression in C. elegans should be done to
    investigate the up-regulated and down-regulated proteins involve in ivermectin resistance.
    Matched MeSH terms: Down-Regulation
  5. Mohd Khalizan Sabullah, Azlan Jualang Gansau, Mohd Rosni Sulaiman, Fisal Ahmad
    Observations on the effects of copper on the liver proteome of Puntius javanicus based on the
    one dimensional PAGE was carried out. The liver was dissected from each fish, which was
    separately treated with different concentrations of copper sulfate ranging from 0.1 to 5.0 mg/L.
    The livers were extracted and one dimensional PAGE was performed under nonreducing
    (native) and reducing (SDS)-PAGE. Several bands were resolved in the native PAGE with
    probable candidates for the effect of copper observed showing an increased in the expression
    and downregulation strongly associated with increasing copper concentrations. This study
    showed that high concentrations of copper significantly alters P. javanicus liver at the proteome
    level, and preliminary screening based on one dimensional PAGE is considered rapid and
    simple to assess the toxicity effect of copper before more advanced and extensive assesment
    with a second dimensional PAGE is carried out.
    Matched MeSH terms: Down-Regulation
  6. Jr VMB, Luo J, Li Z, Gidley MJ, Bird AR, Tetlow IJ, et al.
    Front Genet, 2020;11:289.
    PMID: 32300357 DOI: 10.3389/fgene.2020.00289
    The enzyme starch synthase IIa (SSIIa) in cereals has catalytic and regulatory roles during the synthesis of amylopectin that influences the functional properties of the grain. Rice endosperm SSIIa is more active in indica accessions compared to japonica lines due to functional SNP variations in the coding region of the structural gene. In this study, downregulating the expression of japonica-type SSIIa in Nipponbare endosperm resulted in either shrunken or opaque grains with an elevated proportion of A-type starch granules. Shrunken seeds had severely reduced starch content and could not be maintained in succeeding generations. In comparison, the opaque grain morphology was the result of weaker down-regulation of SSIIa which led to an elevated proportion of short-chain amylopectin (DP 6-12) and a concomitant reduction in the proportion of medium-chain amylopectin (DP 13-36). The peak gelatinization temperature of starch and the estimated glycemic score of cooked grain as measured by the starch hydrolysis index were significantly reduced. These results highlight the important role of medium-chain amylopectin in influencing the functional properties of rice grains, including its digestibility. The structural, regulatory and nutritional implications of down-regulated japonica-type SSIIa in rice endosperm are discussed.
    Matched MeSH terms: Down-Regulation
  7. Yang B, Wang Q, Li Y, Li L, Zhang Y, Leong Bin Abdullah MFI, et al.
    PLoS One, 2023;18(4):e0282488.
    PMID: 37099528 DOI: 10.1371/journal.pone.0282488
    OBJECTIVE: The present study opted for the adrenal phaeochromocytoma (PC12) cell line to frame a neuronal injury model induced by alcohol exposure in vitro, aiming to probe whether TAp73 and miR-96-5p are involved in the neuronal injury process induced by alcohol and elucidate the regulatory relationship between miR-96-5p and TAp73.

    METHODS: Immunofluorescence staining was used to observe the structural features of PC12 cells after culturing in medium with nerve growth factor (NGF). After different doses and different durations of alcohol treatment, CCK-8 assay was performed to detect the viability of PC12 cells, flow cytometry assay was carried out to detect the apoptosis rate of PC12 cells, dual-luciferase reporter assay was used to definitude the regulatory relationship between miR-96-5p and Tp73, and western blot was used to detect the protein expression of TAp73.

    RESULTS: The result of immunofluorescence staining demonstrated that PC12 cells abundantly expressed Map2, CCK-8 assay illustrated alcohol exposure significantly downregulated the cell viability of PC12 cells, Treatment with miR-96-5p inhibitor induced apoptosis and upregulated the expression of TAp73 in PC12 cells. Contrastingly, miR-96-5p mimic reversed the above effects and downregulation of TAp73 inhibited the apoptosis of PC12 cells.

    CONCLUSION: The present study demonstrated that miR-96-5p participates in alcohol-induced apoptosis in PC12 cells via negatively regulating TAp73.

    Matched MeSH terms: Down-Regulation
  8. Mohd Zain MZ, Ismail NH, Ahmad N, Sulong S, Karsani SA, Abdul Majid N
    Mol Biol Rep, 2020 Oct;47(10):7735-7743.
    PMID: 32959195 DOI: 10.1007/s11033-020-05848-y
    Telomerase is a cancer promoting ribonucleoprotein complex and is a potential therapeutic target for cancer. In this study, the effects of telomerase downregulation on the whole cell proteome were investigated. Understanding how the effect of downregulation on the whole proteome profile will generate a greater understanding of the possible roles played by telomerase in cancer. Downregulation was achieved by RNA interference (RNAi), targeting the telomerase reverse transcriptase (TERT) subunits of telomerase. Transfection of TERT siRNA downregulates TERT gene expression and induced downregulation of telomerase activity. Investigation of the effect of silencing TERT in telomerase was further validated through proteomic analysis by performing 2-dimension electrophoresis (2DE) coupled with MALDI-TOF/TOF. 12 protein spots in HeLa cells were reported to be significantly differentially expressed with 11 of them were upregulated and 1 downregulated. Through STRING analysis, differentially expressed proteins demonstrated strong associations with endoplasmic reticulum stress marker and mitochondrial energy production marker. In conclusions, the result exhibited novel integrated proteomic response involving endoplasmic reticulum stress and mitochondrial energy production in response to the TERT downregulation in cervical cancer cells.
    Matched MeSH terms: Down-Regulation*
  9. Arulselvan P, Tan WS, Gothai S, Muniandy K, Fakurazi S, Esa NM, et al.
    Molecules, 2016 Oct 31;21(11).
    PMID: 27809259
    In the present investigation, we prepared four different solvent fractions (chloroform, hexane, butanol, and ethyl acetate) of Moringa oleifera extract to evaluate its anti-inflammatory potential and cellular mechanism of action in lipopolysaccharide (LPS)-induced RAW264.7 cells. Cell cytotoxicity assay suggested that the solvent fractions were not cytotoxic to macrophages at concentrations up to 200 µg/mL. The ethyl acetate fraction suppressed LPS-induced production of nitric oxide and proinflammatory cytokines in macrophages in a concentration-dependent manner and was more effective than the other fractions. Immunoblot observations revealed that the ethyl acetate fraction effectively inhibited the expression of inflammatory mediators including cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor (NF)-κB p65 through suppression of the NF-κB signaling pathway. Furthermore, it upregulated the expression of the inhibitor of κB (IκBα) and blocked the nuclear translocation of NF-κB. These findings indicated that the ethyl acetate fraction of M. oleifera exhibited potent anti-inflammatory activity in LPS-stimulated macrophages via suppression of the NF-κB signaling pathway.
    Matched MeSH terms: Down-Regulation/drug effects*
  10. Ambrose KK, Ishak T, Lian LH, Goh KJ, Wong KT, Ahmad-Annuar A, et al.
    Neurol India, 2017 5 11;65(3):512-517.
    PMID: 28488611 DOI: 10.4103/neuroindia.NI_237_16
    INTRODUCTION: MicroRNAs (miRNAs) are short RNA molecules of approximately 22 nucleotides that function as post-transcriptional regulators of gene expression. They are expressed in a tissue-specific manner and show different expression patterns in development and disease; hence, they can potentially act as disease-specific biomarkers. Several miRNAs have been shown to be deregulated in plasma and skeletal muscles of myotonic dystrophy type 1 (DM1) patients.

    METHODS: We evaluated the expression patterns of 11 candidate miRNAs using quantitative real-time PCR in whole blood (n = 10) and muscle biopsy samples (n = 9) of DM1 patients, and compared them to those of normal control samples (whole blood, n = 10; muscle, n = 9).

    RESULTS: In DM1 whole blood, miRNA-133a, -29b, and -33a were significantly upregulated, whereas miRNA-1, -133a, and -29c were significantly downregulated in the skeletal muscles compared to controls.

    CONCLUSIONS: Our findings align to those reported in other studies and point towards pathways that potentially contribute toward pathogenesis in DM1. However, the currently available data is not sufficient for these miRNAs to be made DM1-specific biomarkers because they seem to be common to many muscle pathologies. Hence, they lack specificity, but reinforce the need for further exploration of DM1 biomarkers.

    Matched MeSH terms: Down-Regulation/physiology*
  11. Khalilpourfarshbafi M, Devi Murugan D, Abdul Sattar MZ, Sucedaram Y, Abdullah NA
    PLoS One, 2019;14(6):e0218792.
    PMID: 31226166 DOI: 10.1371/journal.pone.0218792
    The increased prevalence of obesity and associated insulin resistance calls for effective therapeutic treatment of metabolic diseases. The current PPARγ-targeting antidiabetic drugs have undesirable side effects. The present study investigated the anti-diabetic and anti-obesity effects of withaferin A (WFA) in diet-induced obese (DIO) C57BL/6J mice and also the anti-adipogenic effect of WFA in differentiating 3T3- F442A cells. DIO mice were treated with WFA (6 mg/kg) or rosiglitazone (10 mg/kg) for 8 weeks. At the end of the treatment period, metabolic profile, liver function and inflammatory parameters were obtained. Expression of selective genes controlling insulin signaling, inflammation, adipogenesis, energy expenditure and PPARγ phosphorylation-regulated genes in epididymal fats were analyzed. Furthermore, the anti-adipogenic effect of WFA was evaluated in 3T3- F442A cell line. WFA treatment prevented weight gain without affecting food or caloric intake in DIO mice. WFA-treated group also exhibited lower epididymal and mesenteric fat pad mass, an improvement in lipid profile and hepatic steatosis and a reduction in serum inflammatory cytokines. Insulin resistance was reduced as shown by an improvement in glucose and insulin tolerance and serum adiponectin. WFA treatment upregulated selective insulin signaling (insr, irs1, slc2a4 and pi3k) and PPARγ phosphorylation-regulated (car3, selenbp1, aplp2, txnip, and adipoq) genes, downregulated inflammatory (tnf-α and il-6) genes and altered energy expenditure controlling (tph2 and adrb3) genes. In 3T3- F442A cell line, withaferin A inhibited adipogenesis as indicated by a decrease in lipid accumulation in differentiating adipocytes and protein expression of PPARγ and C/EBPα. The effect of rosiglitazone on physiological and lipid profiles, insulin resistance, some genes expression and differentiating adipocytes were markedly different. Our data suggest that WFA is a promising therapeutic agent for both diabetes and obesity.
    Matched MeSH terms: Down-Regulation/drug effects
  12. Aamir K, Khan HU, Hossain CF, Afrin MR, Jusuf PR, Waheed I, et al.
    Life Sci, 2022 Jan 15;289:120232.
    PMID: 34919901 DOI: 10.1016/j.lfs.2021.120232
    BACKGROUND: Type 2 diabetes mellitus (T2DM) is a worldwide health issue primarily due to failure of pancreatic β-cells to release sufficient insulin.

    PURPOSE: The present work aimed to assess the antidiabetic potential of arjunolic acid (AA) isolated from Terminalia arjuna in type 2 diabetic rats.

    STUDY DESIGN: After extraction, isolation and purification, AA was orally administered to type 2 diabetic Sprague Dawley rats to investigate antidiabetic effect of AA.

    METHOD: T2DM was induced via single intraperitoneal injection of streptozotocin-nicotinamide (STZ-NIC) in adult male rats. After 10 days, fasting and random blood glucose (FBG and RBG), body weight (BW), food and water intake, serum C-peptide, insulin and glycated hemoglobin (HbA1c) was measured to confirm T2DM development. Dose dependent effects of orally administered AA (25 and 50 mg/kg/day) for 4 weeks was investigated by measuring BW variation, fasting and postprandial hyperglycemia, oral glucose tolerance test (OGTT), and levels of serum HbA1c, serum total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), high density lipoprotein (HDL), serum and pancreatic C-peptide, insulin, growth differentiation factor 15 (GDF-15), serum and pancreatic inflammatory cytokines.

    RESULTS: The oral administration of AA in preclinical model of T2DM significantly normalized FBG and RBG, restored BW, controlled polyphagia, polydipsia and glucose tolerance. In addition, AA notably reduced serum HbA1c, TC, TG, LDL with non-significant increase in HDL. On the other hand, significant increase in serum and pancreatic C-peptide and insulin was observed with AA treatment, while serum and pancreatic GDF-15 were non-significantly altered in AA treated diabetic rats. Moreover, AA showed dose dependent reduction in serum and pancreatic proinflammatory cytokines including TNF-α, IL-1β and IL-6.

    CONCLUSION: For the first time our findings highlighted AA as a potential candidate in type 2 diabetic conditions.

    Matched MeSH terms: Down-Regulation/drug effects*
  13. Gholami K, Muniandy S, Salleh N
    J. Biomed. Biotechnol., 2012;2012:596084.
    PMID: 23226939 DOI: 10.1155/2012/596084
    Under progesterone (P) dominance, fluid loss assists uterine closure which is associated with pH reduction. We hypothesize that P inhibits uterine fluid secretion and HCO3⁻ transport.
    Matched MeSH terms: Down-Regulation/drug effects; Down-Regulation/genetics*
  14. Jiang L, Hindmarch CC, Rogers M, Campbell C, Waterfall C, Coghill J, et al.
    Sci Rep, 2016 10 24;6:35671.
    PMID: 27774996 DOI: 10.1038/srep35671
    Glucocorticoids are steroids that reduce inflammation and are used as immunosuppressive drugs for many diseases. They are also the mainstay for the treatment of minimal change nephropathy (MCN), which is characterised by an absence of inflammation. Their mechanisms of action remain elusive. Evidence suggests that immunomodulatory drugs can directly act on glomerular epithelial cells or 'podocytes', the cell type which is the main target of injury in MCN. To understand the nature of glucocorticoid effects on non-immune cell functions, we generated RNA sequencing data from human podocyte cell lines and identified the genes that are significantly regulated in dexamethasone-treated podocytes compared to vehicle-treated cells. The upregulated genes are of functional relevance to cytoskeleton-related processes, whereas the downregulated genes mostly encode pro-inflammatory cytokines and growth factors. We observed a tendency for dexamethasone-upregulated genes to be downregulated in MCN patients. Integrative analysis revealed gene networks composed of critical signaling pathways that are likely targeted by dexamethasone in podocytes.
    Matched MeSH terms: Down-Regulation/drug effects; Down-Regulation/genetics
  15. Ng TS, Chew SY, Rangasamy P, Mohd Desa MN, Sandai D, Chong PP, et al.
    Front Microbiol, 2015;6:1334.
    PMID: 26648919 DOI: 10.3389/fmicb.2015.01334
    Candida glabrata is an emerging human fungal pathogen that has efficacious nutrient sensing and responsiveness ability. It can be seen through its ability to thrive in diverse range of nutrient limited-human anatomical sites. Therefore, nutrient sensing particularly glucose sensing is thought to be crucial in contributing to the development and fitness of the pathogen. This study aimed to elucidate the role of SNF3 (Sucrose Non Fermenting 3) as a glucose sensor and its possible role in contributing to the fitness and survivability of C. glabrata in glucose-limited environment. The SNF3 knockout strain was constructed and subjected to different glucose concentrations to evaluate its growth, biofilm formation, amphotericin B susceptibility, ex vivo survivability and effects on the transcriptional profiling of the sugar receptor repressor (SRR) pathway-related genes. The CgSNF3Δ strain showed a retarded growth in low glucose environments (0.01 and 0.1%) in both fermentation and respiration-preferred conditions but grew well in high glucose concentration environments (1 and 2%). It was also found to be more susceptible to amphotericin B in low glucose environment (0.1%) and macrophage engulfment but showed no difference in the biofilm formation capability. The deletion of SNF3 also resulted in the down-regulation of about half of hexose transporters genes (four out of nine). Overall, the deletion of SNF3 causes significant reduction in the ability of C. glabrata to sense limited surrounding glucose and consequently disrupts its competency to transport and perform the uptake of this critical nutrient. This study highlighted the role of SNF3 as a high affinity glucose sensor and its role in aiding the survivability of C. glabrata particularly in glucose limited environment.
    Matched MeSH terms: Down-Regulation
  16. Thent ZC, Froemming GRA, Ismail ABM, Fuad SBSA, Muid S
    Iran J Basic Med Sci, 2020 Sep;23(9):1155-1163.
    PMID: 32963737 DOI: 10.22038/ijbms.2020.45296.10545
    Objectives: Since bisphenol A (BPA) induces bone loss and phytoestrogens enhance the osteoblastogenesis by binding to the non-classical and classical oestrogen receptors, respectively, the present study was aimed to observe the osteoprotective effect of phytoestrogens on BPA-induced osteoblasts in hFOB 1.19 cells.

    Materials and Methods: All groups of hFOB 1.19 cells were induced with 12.5 μg/ml of BPA except the control (Ctrl) group. Meanwhile, treated groups received phytoestrogens; Daidzein (Dz), Genistein (Gt), Equol (Eq) and 17β-oestradiol (Est) in different concentrations for 24 hr duration.

    Results: We found that the protein expression of non-classical oestrogen-related receptor (ERRG) was highly expressed in BPA group, whereas classical oestrogen receptor alpha (ERα) and oestrogen receptor beta (ERβ) were relatively increased with phytoestrogens treatment under BPA exposure. The dense actin cytoskeletal filaments were also observed. qRT-PCR showed up-regulation of mitogen-activated protein kinase 3 (MAPK3) and G protein-coupled receptor 30 (GPR30) expressions; significant down-regulation of ERRG and up-regulation of ERα and ERβ were observed in phytoestrogens-treated cells, which was supported by the increased expressions of oestrogen receptor 1 (ESR1) and oestrogen receptor 2 (ESR2).

    Conclusion: Phytoestrogens improved the deteriorative effect of BPA via down-regulation of ERRG in hFOB 1.19 cells. This study showed that the efficacy of consumption of phytoestrogens in rendering them as potential therapeutic strategy in combating the adverse bone effects of BPA.

    Matched MeSH terms: Down-Regulation
  17. Saad N, Alberio R, Johnson AD, Emes RD, Giles TC, Clarke P, et al.
    Oncotarget, 2018 Mar 23;9(22):16008-16027.
    PMID: 29662623 DOI: 10.18632/oncotarget.24664
    Inducing stable control of tumour growth by tumour reversion is an alternative approach to cancer treatment when eradication of the disease cannot be achieved. The process requires re-establishment of normal control mechanisms that are lost in cancer cells so that abnormal proliferation can be halted. Embryonic environments can reset cellular programmes and we previously showed that axolotl oocyte extracts can reprogram breast cancer cells and reverse their tumorigenicity. In this study, we analysed the gene expression profiles of oocyte extract-treated tumour xenografts to show that tumour reprogramming involves cell cycle arrest and acquisition of a quiescent state. Tumour dormancy is associated with increased P27 expression, restoration of RB function and downregulation of mitogen-activated signalling pathways. We also show that the quiescent state is associated with increased levels of H4K20me3 and decreased H4K20me1, an epigenetic profile leading to chromatin compaction. The epigenetic reprogramming induced by oocyte extracts is required for RB hypophosphorylation and induction of P27 expression, both occurring during exposure to the extracts and stably maintained in reprogrammed tumour xenografts. Therefore, this study demonstrates the value of oocyte molecules for inducing tumour reversion and for the development of new chemoquiescence-based therapies.
    Matched MeSH terms: Down-Regulation
  18. Khoo XH, Paterson IC, Goh BH, Lee WL
    Cancers (Basel), 2019 Aug 14;11(8).
    PMID: 31416147 DOI: 10.3390/cancers11081166
    Drug resistance remains a severe problem in most chemotherapy regimes. Recently, it has been suggested that cancer cell-derived extracellular vesicles (EVs) could mediate drug resistance. In this study, the role of EVs in mediating the response of oral squamous cell carcinoma (OSCC) cells to cisplatin was investigated. We isolated and characterized EVs from OSCC cell lines showing differential sensitivities to cisplatin. Increased EV production was observed in both de novo (H314) and adaptive (H103/cisD2) resistant lines compared to sensitive H103 cells. The protein profiles of these EVs were then analyzed. Differences in the proteome of EVs secreted by H103 and H103/cisD2 indicated that adaptation to cisplatin treatment caused significant changes in the secreted nanovesicles. Intriguingly, both resistant H103/cisD2 and H314 cells shared a highly similar EV protein profile including downregulation of the metal ion transporter, ATP1B3, in the EVs implicating altered drug delivery. ICP-MS analysis revealed that less cisplatin accumulated in the resistant cells, but higher levels were detected in their EVs. Therefore, we inhibited EV secretion from the cells using a proton pump inhibitor and observed an increased drug sensitivity in cisplatin-resistant H314 cells. This finding suggests that control of EV secretion could be a potential strategy to enhance the efficacy of cancer treatment.
    Matched MeSH terms: Down-Regulation
  19. Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, et al.
    Cells, 2019 Sep 20;8(10).
    PMID: 31547193 DOI: 10.3390/cells8101118
    Epithelial-to-Mesenchymal Transition (EMT) has been shown to be crucial in tumorigenesis where the EMT program enhances metastasis, chemoresistance and tumor stemness. Due to its emerging role as a pivotal driver of tumorigenesis, targeting EMT is of great therapeutic interest in counteracting metastasis and chemoresistance in cancer patients. The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin, and this process is regulated by a complex network of signaling pathways and transcription factors. In this review, we summarized the recent understanding of the roles of E- and N-cadherins in cancer invasion and metastasis as well as the crosstalk with other signaling pathways involved in EMT. We also highlighted a few natural compounds with potential anti-EMT property and outlined the future directions in the development of novel intervention in human cancer treatments. We have reviewed 287 published papers related to this topic and identified some of the challenges faced in translating the discovery work from bench to bedside.
    Matched MeSH terms: Down-Regulation
  20. Heng BC, Gong T, Xu J, Lim LW, Zhang C
    Biomed Rep, 2018 Aug;9(2):161-168.
    PMID: 29963307 DOI: 10.3892/br.2018.1108
    Dental pulp stem cells (DPSCs) originate from the embryonic neural crest and have neurogenic potential. The present study investigated the roles of the forward and reverse EphrinB2 signalling pathways during DPSC neurogenesis. Treatment of DPSCs with recombinant EphrinB2-Fc protein over 7 days in a neural induction culture resulted in significant downregulation of the following neural markers: βIII-Tubulin, neural cell adhesion molecule (NCAM), nestin, neurogenin 2 (NGN2), neurofilament medium polypeptide and Musashi1. Immunocytochemistry revealed that EphrinB2-Fc-treated DPSCs exhibited more rounded morphologies with fewer neurite outgrowths as well as reduced protein expression of βIII-tubulin and NGN2. Treatment of DPSCs with a peptide inhibitor specific to the EphB4 receptor significantly upregulated expression of the neural markers microtubule-associated protein 2, Musashi1, NGN2 and neuron-specific enolase, whereas treatment with a peptide inhibitor specific to the EphB2 receptor exerted negligible effects on neurogenesis. Transgenic expression of EphrinB2 in DPSCs resulted in significant upregulation of Musashi1 and NCAM gene expression, while treatment of DPSCs with recombinant EphB4-Fc protein led to significant upregulation of only Musashi1. Thus, it may be concluded that stimulation of forward EphrinB2-EphB4 signalling markedly inhibited neurogenesis in DPSCs, whereas suppression of this forward signalling pathway with peptide inhibitor specific to EphB4 promoted neurogenesis. Meanwhile, stimulation of reverse EphB4-EphrinB2 signalling only marginally enhanced the neural differentiation of DPSCs. The present findings indicate the potential application of peptide or small molecule inhibitors of EphrinB2 forward signalling in neural tissue engineering with DPSCs.
    Matched MeSH terms: Down-Regulation
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links