Displaying all 2 publications

Abstract:
Sort:
  1. Pandey M, Mohamad N, Amin MC
    Mol Pharm, 2014 Oct 6;11(10):3596-608.
    PMID: 25157890 DOI: 10.1021/mp500337r
    The objective of this study is to synthesize and evaluate acute toxicity of the bacterial cellulose (BC)/acrylamide (Am) hydrogels as noncytotoxic and biocompatible oral drug delivery vehicles. A novel series of solubilized BC/Am hydrogels were synthesized using a microwave irradiation method. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), swelling ratio, porosity, drug release, and in vitro and in vivo biocompatibility experiments. FTIR spectra revealed that the BC crystallinity and gel fraction decreased as the NaOH concentration increased from 2% to 10% w/v, whereas the optical transparency, pH sensitivity, and porosity were enhanced with increasing alkali concentration. Theophylline was used as a model drug for drug loading and release studies. The percentage of drug released was higher at pH 7.4 compared to pH 1.5. In vitro cytotoxicity and hemolytic tests indicated that the BC/Am hydrogel is noncytotoxic and hemocompatible. Results of acute oral toxicity tests on ICR mice suggested that the hydrogels are nontoxic up to 2000 mg/kg when administered orally, as no toxic response or histopathological changes were observed in comparison to control mice. The results of this study demonstrated that the pH-sensitive smart hydrogel makes it a possible safe carrier for oral drug delivery.
    Matched MeSH terms: Drug Delivery Systems/adverse effects
  2. Chowdhury MR, Moshikur RM, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, et al.
    Mol Pharm, 2018 06 04;15(6):2484-2488.
    PMID: 29762034 DOI: 10.1021/acs.molpharmaceut.8b00305
    Paclitaxel (PTX) injection (i.e., Taxol) has been used as an effective chemotherapeutic treatment for various cancers. However, the current Taxol formulation contains Cremophor EL, which causes hypersensitivity reactions during intravenous administration and precipitation by aqueous dilution. This communication reports the preliminary results on the ionic liquid (IL)-based PTX formulations developed to address the aforementioned issues. The formulations were composed of PTX/cholinium amino acid ILs/ethanol/Tween-80/water. A significant enhancement in the solubility of PTX was observed with considerable correlation with the density and viscosity of the ILs, and with the side chain of the amino acids used as anions in the ILs. Moreover, the formulations were stable for up to 3 months. The driving force for the stability of the formulation was hypothesized to be the involvement of different types of interactions between the IL and PTX. In vitro cytotoxicity and antitumor activity of the IL-based formulations were evaluated on HeLa cells. The IL vehicles without PTX were found to be less cytotoxic than Taxol, while both the IL-based PTX formulation and Taxol exhibited similar antitumor activity. Finally, in vitro hypersensitivity reactions were evaluated on THP-1 cells and found to be significantly lower with the IL-based formulation than Taxol. This study demonstrated that specially designed ILs could provide a potentially safer alternative to Cremophor EL as an effective PTX formulation for cancer treatment giving fewer hypersensitivity reactions.
    Matched MeSH terms: Drug Delivery Systems/adverse effects
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links