Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Jayalakshmi P, Ting HC
    Histopathology, 1990 Jul;17(1):89-91.
    PMID: 2146206
    Matched MeSH terms: Drug-Induced Liver Injury/pathology*
  2. Ismail NA, Shamsahal-Din NS, Mamat SS, Zabidi Z, Wan Zainulddin WN, Kamisan FH, et al.
    Pak J Pharm Sci, 2014 Jul;27(4):831-5.
    PMID: 25015448
    The present study aimed to determine the hepatoprotective activity of Dicranopteris linearis L. (family Gleicheniaceae) leaf aqueous extract (DLAE) using two models of liver injury in rats. Rats were divided into ten groups (n=6) and received dH2O (negative control), 200 mg/kg silymarin (positive control) or DLAE (50, 250 and 500 mg/kg) orally once daily for 7 consecutive days and on the 8th day subjected to the hepatotoxic induction either using carbon tetrachloride (CCl4) or paracetamol (PCM). The bloods and livers were collected and subjected to biochemical and microscopical analysis. From the data obtained, only the highest dose of DLAE significantly (P<0.05) reduced the ALP, ALT and AST levels in CCl4-and PCM-induced hepatotoxic rats while the other doses caused significant (P<0.05) reduction only in the levels of ALT and AST. The histological results obtained were in line with the biochemical analysis wherein reduction in the CCl4- and PCM-induced tissue formation of necrosis, steatosis and inflammation occurred in a dose-dependent manner. In conclusion, the DLAE possesses hepatoprotective activity, which could be attributed to its free radicals scavenging and antioxidant activities, and high flavonoids content. Thus, in-depth studies regarding the hepatoprotective activity of DLAE are warranted.
    Matched MeSH terms: Drug-Induced Liver Injury/pathology
  3. Nassar I, Pasupati T, Judson JP, Segarra I
    Malays J Pathol, 2010 Jun;32(1):1-11.
    PMID: 20614720 MyJurnal
    Imatinib, a selective tyrosine kinase inhibitor, is the first line treatment against chronic myelogenous leukaemia (CML) and gastrointestinal stromal tumors (GIST). Several fatal cases have been associated with imatinib hepatotoxicity. Acetaminophen, an over-the-counter analgesic, anti-pyretic drug, which can cause hepatotoxicity, is commonly used in cancer pain management. We assessed renal and hepatic toxicity after imatinib and acetaminophen co-administration in a preclinical model. Four groups of male ICR mice (30-35 g) were fasted overnight and administered either saline solution orally (baseline control), imatinib 100 mg/kg orally (control), acetaminophen 700 mg/kg intraperitoneally (positive control) or co-administered imatinib 100 mg/kg orally and acetaminophen 700 mg/kg intraperitoneally (study group), and sacrificed at 15 min, 30 min, 1 h, 2 h, 4 h and 6 h post-administration (n = 4 per time point). The liver and kidneys were harvested for histopathology assessment. The liver showed reversible cell damage like feathery degeneration, microvesicular fatty change, sinusoidal congestion and pyknosis, when imatinib or acetaminophen were administered separately. The damage increased gradually with time, peaked at 2 h but resolved by 4 h. When both drugs were administered concurrently, the liver showed irreversible damage (cytolysis, karyolysis and karyorrhexis) which did not resolve by 6 h. Very minor renal changes were observed. Acetaminophen and imatinib co-administration increased hepatoxicity which become irreversible, probably due to shared P450 biotransformation pathways and transporters in the liver.
    Matched MeSH terms: Drug-Induced Liver Injury/pathology
  4. Vakiloddin S, Fuloria N, Fuloria S, Dhanaraj SA, Balaji K, Karupiah S
    Pak J Pharm Sci, 2015 May;28(3):951-7.
    PMID: 26004728
    The objective of present study was to explore the hepatoprotective and antioxidant profile of Citrullus colocynthis fruits. Hepatoprotective profile of methanolic extract of Citrullus colocynthis fruits (MECCF) was investigated on rats, which were made hepatotoxic using paracetamol. The antioxidant profile of MECCF was evaluated by conducting Catalase, Super oxide Dismutase, Lipid Peroxidation and Diphenyl Picryl Hydrazyl tests. During hepatoprotective investigation, the Paracetamol treated group II showed significant increase in total bilirubin (TB), serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT) and alkaline phosphatase (ALP) level. The results so obtained showed that pretreatment of rats with MECCF 300mg/kg p.o. decreases the elevated TB, SGOT, SGPT and ALP serum levels. Also, MECCF inhibitory profile was found comparable with toxicant group (Paracetamol 2g/kg, p.o.). The present study concludes that MECCF fruit possess significant hepatoprotective and antioxidant activity.
    Matched MeSH terms: Drug-Induced Liver Injury/pathology
  5. Jeyamalar R, Pathmanathan R, Wong D, Kannan P
    Ann Acad Med Singap, 1992 Nov;21(6):838-40.
    PMID: 1295429
    Amiodarone, a commonly used antiarrhythmic agent, has numerous adverse effects. The purpose of this case report is to highlight its hepatotoxicity, an unusual complication of long term amiodarone therapy. Our patient is a 76-year-old man with underlying ischaemic heart disease and recurrent ventricular tachycardia. Eleven months after commencing amiodarone, he developed asymptomatic raised aminotransferases which resolved following drug withdrawal. Amiodarone was then reintroduced and four years later, the patient developed hepatomegaly, worsening liver biochemistry and histopathological changes consistent with early cirrhosis. His symptoms improved following discontinuation of amiodarone. However, hepatomegaly and a low serum albumin still persist four years later.
    Matched MeSH terms: Drug-Induced Liver Injury/pathology*
  6. Gupta G, Krishna G, Chellappan DK, Gubbiyappa KS, Candasamy M, Dua K
    Mol Cell Biochem, 2014 Aug;393(1-2):223-8.
    PMID: 24771068 DOI: 10.1007/s11010-014-2064-9
    Acetaminophen has a reasonable safety profile when consumed in therapeutic doses. However, it could induce hepatotoxicity and even acute liver failure when taken at an overdose. Pioglitazone, PPARγ ligand, is clinically tested and used in treatment of diabetes. PPARγ is a key nuclear hormone receptor of lipid metabolisms and regulates several gene transcriptions associated with differentiation, growth arrest, and apoptosis. The aim of our study was to evaluate the hepatoprotective activity of pioglitazone on acetaminophen-induced hepatotoxicity and to understand the relationship between the PPARγ and acetaminophen-induced hepato injury. For the experiment, Sprague-Dawley rats (160-180 g) were used and divided into four groups. Groups I and II were normal and experimental controls, respectively. Groups III and IV received the pioglitazone 20 mg/kg for 10 days. Hepatotoxicity was induced in Groups II and III on the eighth day with acetaminophen (i.p. 350 mg/kg body weight). The hepatoprotective effect was evaluated by performing an assay of the total protein, total bilirubin, alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and α-fetoprotein as well as glutathione peroxidase, lipid peroxidation, catalase, superoxide dismutase, and glutathione transferase and liver histopathology. The assay results were presented as mean and standard error of mean for each group. The study group was compared with the control group by one-way ANOVA test. A p value of <0.05 was considered significant. Pioglitazone significantly reduced the elevated level of above serum marker enzymes and also inhibits the free radical formation by scavenging hydroxyl ions. It also restored the level of LPO and significantly elevated the levels of endogenous antioxidant enzymes in acetaminophen-challenged hepatotoxicity. Liver histopathological examination showed that pioglitazone administration antagonized acetaminophen -induced liver pathological damage. Various biochemical estimations of different hepatic markers and antioxidant enzymes and histopathological studies of liver tissues glimpse a support to its significant hepatoprotective activity on acetaminophen -induced hepatotoxicity.
    Matched MeSH terms: Drug-Induced Liver Injury/pathology
  7. Kamisan FH, Yahya F, Mamat SS, Kamarolzaman MF, Mohtarrudin N, Kek TL, et al.
    PMID: 24708543 DOI: 10.1186/1472-6882-14-123
    Dicranopteris linearis (family Gleicheniaceae) has been reported to possess anti-inflammatory and antioxidant activities but no attempt has been made to study its hepatoprotective potential. The aim of the present study was to determine the hepatoprotective effect of methanol extracts of D. linearis (MEDL) against carbon tetrachloride (CCl4)-induced acute liver injury in rats.
    Matched MeSH terms: Drug-Induced Liver Injury/pathology
  8. Koriem KM, Arbid MS, El-Gendy NF
    Toxicol. Mech. Methods, 2010 Nov;20(9):579-86.
    PMID: 20883155 DOI: 10.3109/15376516.2010.518171
    The protective role of Tropaelum majus (T.majus) methyl alcohol extract and vitamin E in the case of toxic effect induced by diethyl maleate was evaluated. Forty-two male albino rats were divided into seven groups of six rats each for 15 days. Group 1: normal control group. Group 2: taken daily oral dose of paraffin oil (0.25ml/100g b.wt rat). Group 3: received daily oral dose of vitamin E (100mg/kg b.wt rat). Group 4: taken daily oral dose of 10% of the LD50 of T.majus methyl alcohol extract. Groups 5–7: injected intra-peritoneally with diethyl maleate (5 μl/100g b.wt rat) but groups 6 and 7 received a daily oral dose of either vitamin E or 10% of the LD50 of T.majus methyl alcohol extract 1h prior to diethyl maleate injection. The present results revealed that diethyl maleate induced serum aspartate and alanine aminotransferases enzymes activities decreased in serum, but their activities in the hepatic tissue showed an increase. Glutathione and glucose-6-phosphate dehydrogenase levels showed a decrease, but thiobarbituric acid reactive substances level showed an increase in both serum and liver tissue. Serum and liver proteins decreased in serum and liver tissue. A significant decrease in blood parameters (hemoglobin, hematocrit, as well as red and white blood cells) and serum glucose occurred. Histopathological results showed that diethyl maleate induced a hoop of edema in the hepatic periportal area; while T.majus methyl alcohol extract or vitamin E prior to diethyl maleate injection shift blood and liver toxicity induced by diethyl maleate towards normal values and preserved hepatic lobular architecture. In conclusion, pre-treatment with either T.majus methyl alcohol extract or vitamin E provide protection against blood and liver toxicity induced by diethyl maleate in rats, these results were confirmed by histological examinations.
    Matched MeSH terms: Drug-Induced Liver Injury/pathology
  9. Somchit N, Wong CW, Zuraini A, Ahmad Bustamam A, Hasiah AH, Khairi HM, et al.
    Drug Chem Toxicol, 2006;29(3):237-53.
    PMID: 16777703
    Itraconazole and fluconazole are potent wide spectrum antifungal drugs. Both of these drugs induce hepatotoxicity clinically. The mechanism underlying the hepatotoxicity is unknown. The purpose of this study was to investigate the role of phenobarbital (PB), an inducer of cytochrome P450 (CYP), and SKF 525A, an inhibitor of CYP, in the mechanism of hepatotoxicity induced by these two drugs in vivo. Rats were pretreated with PB (75 mg/kg for 4 days) prior to itraconazole or fluconazole dosing (20 and 200 mg/kg for 4 days). In the inhibition study, for 4 consecutive days, rats were pretreated with SKF 525A (50 mg/kg) or saline followed by itraconazole or fluconazole (20 and 200 mg/kg) Dose-dependent increases in plasma alanine aminotransferase (ALT), gamma-glutamyl transferase (gamma-GT), and alkaline phosphatase (ALP) activities and in liver weight were detected in rats receiving itraconazole treatment. Interestingly, pretreatment with PB prior to itraconazole reduced the ALT and gamma-GT activities and the liver weight of rats. No changes were observed in rats treated with fluconazole. Pretreatment with SKF 525A induced more severe hepatotoxicity for both itraconazole and fluconazole. CYP 3A activity was inhibited dose-dependently by itraconazole treatment. Itraconazole had no effects on the activity of CYP 1A and 2E. Fluconazole potently inhibited all three isoenzymes of CYP. PB plays a role in hepatoprotection to itraconazole-induced but not fluconazole-induced hepatotoxicity. SKF 525A enhanced the hepatotoxicity of both antifungal drugs in vivo. Therefore, it can be concluded that inhibition of CYP may play a key role in the mechanism of hepatotoxicity induced by itraconazole and fluconazole.
    Matched MeSH terms: Drug-Induced Liver Injury/pathology*
  10. Grace-Lynn C, Chen Y, Latha LY, Kanwar JR, Jothy SL, Vijayarathna S, et al.
    Molecules, 2012 Nov 23;17(12):13937-47.
    PMID: 23178309 DOI: 10.3390/molecules171213937
    The aim of the present study was to evaluate the hepatoprotective activity of lantadene A against acetaminophen-induced liver toxicity in mice was studied. Activity was measured by monitoring the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and bilirubin, along with histo-pathological analysis. Silymarin was used as positive control. A bimodal pattern of behavioural toxicity was exhibited by the lantadene A-treated group at the beginning of the treatment. However, treatment with lantadene A and silymarin resulted in an increase in the liver weight compared with the acetaminophen treated group. The results of the acetaminophen-induced liver toxicity experiments showed that mice treated with lantadene A (500 mg/kg) showed a significant decrease in the activity of ALT, AST and ALP and the level of bilirubin, which were all elevated in the acetaminophen treated group (p < 0.05). Histological studies supported the biochemical findings and a maximum improvement in the histoarchitecture was seen. The lantadene A-treated group showed remarkable protective effects against histopathological alterations, with comparable results to the silymarin treated group. The current study confirmed the hepatoprotective effects of lantadene A against the model hepatotoxicant acetaminophen, which is likely related to its potent antioxidative activity.
    Matched MeSH terms: Drug-Induced Liver Injury/pathology
  11. Ansar S, Iqbal M
    Hum Exp Toxicol, 2016 Dec;35(12):1305-1311.
    PMID: 26825963
    The present study was undertaken to evaluate the effect of diallylsulphide (DAS) against mercuric chloride (HgCl2)-induced oxidative stress in rat livers. Rats were randomly divided into four groups of six rats each and exposed to HgCl2 (50 mg/kg/body weight (b.w.)) intraperitoneally and/or DAS (200 mg/kg/b.w.) by gavage. HgCl2 administration enhanced alanine aminotransferase (AST) and aspartate aminotransferase (ALT) levels (p < 0.05) with reduction in the levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). However, treatment with DAS markedly attenuated HgCl2-induced biochemical alterations in liver and serum transaminases (AST and ALT; p < 0.05). Further, biochemical results were confirmed by histopathological changes as compared to HgCl2-intoxicated rats. Histopathology of liver also showed that administration of DAS significantly reduced the damage generated by HgCl2 The present study suggests that DAS shows antioxidant activity and plays a protective role against mercury-induced oxidative damage in the rat livers.
    Matched MeSH terms: Drug-Induced Liver Injury/pathology
  12. Zakaria ZA, Mahmood ND, Omar MH, Taher M, Basir R
    Pharm Biol, 2019 Dec;57(1):335-344.
    PMID: 31068038 DOI: 10.1080/13880209.2019.1606836
    CONTEXT: Muntingia calabura L. (Muntingiaceae) exerts antioxidant and anti-inflammatory activities, thus, it might be a good hepatoprotective agent.

    OBJECTIVE: This study investigates the effect of methanol extract of M. calabura leaves (MMCL) on hepatic antioxidant and anti-inflammatory activities in CCl4-induced hepatotoxic rat.

    MATERIALS AND METHODS: Sprague Dawley rats (n = 6) were treated (p.o.) with 10% DMSO (Groups 1 and 2), 50 mg/kg N-acetylcysteine (Group 3) or, 50, 250, or 500 mg/kg MMCL (Groups 4-6) for 7 consecutive days followed by pretreatment (i.p.) with vehicle (Group 1) or 50% CCl4 in olive oil (v/v) (Groups 2-6) on day 7th. Plasma liver enzymes and hepatic antioxidant enzymes and pro-inflammatory cytokines concentrations were measured while liver histopathology was examined.

    RESULTS: MMCL, at 500 mg/kg, significantly (p liver catalase (92.1 versus 114.4 U/g tissue) and superoxide dismutase (3.4 versus 5.5 U/g tissue). Additionally, qualitative phytochemicals analysis showed that MMCL contained gallic acid, ferulic acid, quercetin, and genistein.

    DISCUSSION AND CONCLUSIONS: MMCL ability to attenuate CCl4-induced hepatotoxicity could be helpful in the development of hepatoprotective agents with fewer side effects.

    Matched MeSH terms: Drug-Induced Liver Injury/pathology
  13. Rengarajan T, Rajendran P, Nandakumar N, Lokeshkumar B, Balasubramanian MP
    J Environ Pathol Toxicol Oncol, 2015;34(4):287-98.
    PMID: 26756422
    The aim of the study was to evaluate the protective activity of D-Pinitol against carbon tetrachloride (CCl4)-induced hepatotoxicity in rats. The animals were divided into six groups, with each group consisting of six animals. Group I animals served as normal controls and received olive oil vehicle (1.0 ml/kg body weight intraperitoneally). Group II rats served as CCl4 controls, which received 30% CCl4 suspended in olive oil (3.0 ml/kg body weight intraperitoneally) twice a week for 4 weeks. Group III rats were treated with 30% CCl4 suspended in olive oil (3.0 ml/kg body weight intraperitoneally) twice a week for 4 weeks, followed by D-Pinitol (100 mg/kg body weight) given for 28 days intragastrically. Group IV rats received D-Pinitol alone at a concentration of 100 mg/kg body weight for 28 days intragastrically. At the end of the experimental period, serum marker enzymes and lipid peroxidation (LPO) levels were significantly increased in group II animals. On the other hand, D-Pinitol treatment significantly decreased marker enzymes and LPO levels and increased the antioxidant level. CYP expression was also investigated. Therefore, the present study revealed that D-Pinitol acts as a protective agent by decreasing metabolic activation of xenobiotics through its antioxidant nature.
    Matched MeSH terms: Drug-Induced Liver Injury/pathology
  14. Iqbal M, Gnanaraj C
    Environ Health Prev Med, 2012 Jul;17(4):307-15.
    PMID: 22207570 DOI: 10.1007/s12199-011-0255-5
    OBJECTIVES: The purpose of this study was to evaluate the ability of aqueous extract of Eleusine indica to protect against carbon tetrachloride (CCl₄)-induced hepatic injury in rats.

    METHODS: The antioxidant activity of E. indica was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay. The total phenolic content of E. indica was also determined. Biochemical parameters [e.g. alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), glutathione (GSH), catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase and quinone reductase] were used to evaluate hepatic damage in animals pretreated with E. indica and intoxicated with CCl₄. CCl₄-mediated hepatic damage was also evaluated by histopathologically.

    RESULTS: E. indica extract was able to reduce the stable DPPH level in a dose-dependent manner. The half maximal inhibitory concentration (IC₅₀) value was 2350 μg/ml. Total phenolic content was found to be 14.9 ± 0.002 mg/g total phenolic expressed as gallic acid equivalent per gram of extract. Groups pretreated with E. indica showed significantly increased activity of antioxidant enzymes compared to the CCl₄-intoxicated group (p < 0.05). The increased levels of serum ALT and AST were significantly prevented by E. indica pretreatment (p < 0.05). The extent of MDA formation due to lipid peroxidation was significantly reduced (p < 0.05), and reduced GSH was significantly increased in a dose-dependently manner (p < 0.05) in the E. indica-pretreated groups as compared to the CCl₄-intoxicated group. The protective effect of E. indica was further evident through decreased histopathological alterations in the liver.

    CONCLUSION: The results of our study indicate that the hepatoprotective effects of E. indica might be ascribable to its antioxidant and free radical scavenging property.

    Matched MeSH terms: Drug-Induced Liver Injury/pathology
  15. Shah MD, Gnanaraj C, Haque AT, Iqbal M
    Pharm Biol, 2015 Jan;53(1):31-9.
    PMID: 25243876 DOI: 10.3109/13880209.2014.909502
    Nephrolepis biserrata L. (Nephrolepidaceae) has been used in folk medicine for protection against different diseases.
    Matched MeSH terms: Drug-Induced Liver Injury/pathology
  16. Tan JR, Chakravarthi S, Judson JP, Haleagrahara N, Segarra I
    Naunyn Schmiedebergs Arch Pharmacol, 2013 Jul;386(7):619-33.
    PMID: 23552887 DOI: 10.1007/s00210-013-0861-4
    Sunitinib is a tyrosine kinase inhibitor for GIST and advanced renal cell carcinoma. Diclofenac is used in cancer pain management. Coadministration may mediate P450 toxicity. We evaluate their interaction, assessing biomarkers ALT, AST, BUN, creatinine, and histopathological changes in the liver, kidney, heart, brain, and spleen. ICR mice (male, n = 6 per group/dose) were administered saline (group A) or 30 mg/kg diclofenac ip (group B), or sunitinib po at 25, 50, 80, 100, 140 mg/kg (group C) or combination of diclofenac (30 mg/kg, ip) and sunitinib (25, 50, 80, 100, 140 mg/kg po). Diclofenac was administered 15 min before sunitinib, mice were euthanized 4 h post-sunitinib dose, and biomarkers and tissue histopathology were assessed. AST was 92.2 ± 8.0 U/L in group A and 159.7 ± 14.6 U/L in group B (p < 0.05); in group C, it the range was 105.1-152.6 U/L, and in group D, it was 156.0-209.5 U/L (p < 0.05). ALT was 48.9 ± 1.6 U/L (group A), 95.1 ± 4.5 U/L (p < 0.05) in group B, and 50.5-77.5 U/L in group C and 82.3-115.6 U/L after coadministration (p < 0.05). Renal function biomarker BUN was 16.3 ± 0.6 mg/dl (group A) and increased to 29.9 ± 2.6 mg/dl in group B (p < 0.05) and it the range was 19.1-33.3 mg/dl (p < 0.05) and 26.9-40.8 mg/dl in groups C and D, respectively. Creatinine was 5.9 pmol/ml in group A; 6.2 pmol/ml in group B (p < 0.01), and the range was 6.0-6.2 and 6.2-6.4 pmol/ml in groups C and D, respectively (p < 0.05 for D). Histopathological assessment (vascular and inflammation damages) showed toxicity in group B (p < 0.05) and mild toxicity in group C. Damage was significantly lesser in group D than group B (p < 0.05). Spleen only showed toxicity after coadministration. These results suggest vascular and inflammation protective effects of sunitinib, not shown after biomarker analysis.
    Matched MeSH terms: Drug-Induced Liver Injury/pathology
  17. Sharifudin SA, Fakurazi S, Hidayat MT, Hairuszah I, Moklas MA, Arulselvan P
    Pharm Biol, 2013 Mar;51(3):279-88.
    PMID: 23043505 DOI: 10.3109/13880209.2012.720993
    Moringa oleifera Lam. (Moringaceae) is a rich source of essential minerals and antioxidants; it has been used in human and animal nutrition. The leaves and flowers are being used by the population with great dietary importance.
    Matched MeSH terms: Drug-Induced Liver Injury/pathology
  18. Koh PH, Mokhtar RA, Iqbal M
    Hum Exp Toxicol, 2012 Jan;31(1):81-91.
    PMID: 21508074 DOI: 10.1177/0960327111407226
    This study was aimed to evaluate the effect of Cymbopogon citratus against carbon tetrachloride (CCl(4))-mediated hepatic oxidative damage in rats. Rats were administrated with C. citratus extract (100, 200 and 300 mg/kg b.w.) for 14 days before the challenge of CCl(4) (1.2 ml/kg b.w. p.o) on 13th and 14th days. Hepatic damage was evaluated by employing serum biochemical parameters (alanine aminotransferase-ALT, aspartate aminotransferase-AST and lactate dehydrogenase-LDH), malondialdehye (MDA) level, reduced GSH and antioxidant enzymes (catalase: CAT, glutathione peroxidase: GPX, quinone reductase: QR, glutathione S-transferase: GST, glutathione reductase: GR, glucose-6-phosphate dehyrogenase: G6PD). In addition, CCl(4)-mediated hepatic damage was further evaluated by histopathological examination. However, most of these changes were alleviated by prophylactic treatment of animals with C. citratus dose dependently (p < 0.05). The protection was further evident through decreased histopathological alterations in liver. The results of the present study indicated that the hepatoprotective effect of C. citratus might be ascribable to its antioxidant and free radical scavenging property.
    Matched MeSH terms: Drug-Induced Liver Injury/pathology
  19. Nithianantham K, Shyamala M, Chen Y, Latha LY, Jothy SL, Sasidharan S
    Molecules, 2011 Dec 06;16(12):10134-45.
    PMID: 22146374 DOI: 10.3390/molecules161210134
    BACKGROUND AND AIM: Clitoria ternatea, a medicinal herb native to tropical equatorial Asia, is commonly used in folk medicine to treat various diseases. The aim of the present study is to evaluate the hepatoprotective and antioxidant activity of C. ternatea against experimentally induced liver injury.

    METHODS: The antioxidant property of methanolic extract (ME) of C. ternatea leaf was investigated by employing an established in vitro antioxidant assay. The hepatoprotective effect against paracetamol-induced liver toxicity in mice of ME of C. ternatea leaf was also studied. Activity was measured by monitoring the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and billirubin along with histopathological analysis.

    RESULTS: The amount of total phenolics and flavonoids were estimated to be 358.99 ± 6.21 mg/g gallic acid equivalent and 123.75 ± 2.84 mg/g catechin equivalent, respectively. The antioxidant activity of C. ternatea leaf extract was 67.85% at a concentration of 1 mg/mL and was also concentration dependant, with an IC(50) value of 420.00 µg/mL. The results of the paracetamol-induced liver toxicity experiments showed that mice treated with the ME of C. ternatea leaf (200 mg/kg) showed a significant decrease in ALT, AST, and bilirubin levels, which were all elevated in the paracetamol group (p < 0.01). C. ternatea leaf extract therapy also protective effects against histopathological alterations. Histological studies supported the biochemical findings and a maximum improvement in the histoarchitecture was seen.

    CONCLUSIONS: The current study confirmed the hepatoprotective effect of C. ternatea leaf extract against the model hepatotoxicant paracetamol. The hepatoprotective action is likely related to its potent antioxidative activity.

    Matched MeSH terms: Drug-Induced Liver Injury/pathology
  20. Lim AY, Segarra I, Chakravarthi S, Akram S, Judson JP
    BMC Pharmacol., 2010;10:14.
    PMID: 20950441 DOI: 10.1186/1471-2210-10-14
    BACKGROUND: Sunitinib, a tyrosine kinase inhibitor to treat GIST and mRCC may interact with paracetamol as both undergo P450 mediated biotransformation and P-glycoprotein transport. This study evaluates the effects of sunitinib-paracetamol coadministration on liver and renal function biomarkers and liver, kidney, brain, heart and spleen histopathology. ICR male mice (n = 6 per group/dose) were administered saline (group-A) or paracetamol 500 mg/kg IP (group-B), or sunitinib at 25, 50, 80, 100, 140 mg/kg PO (group-C) or coadministered sunitinib at 25, 50, 80, 100, 140 mg/kg PO and paracetamol IP at fixed dose 500 mg/kg (group-D). Paracetamol was administered 15 min before sunitinib. Mice were sacrificed 4 h post sunitinib administration.
    RESULTS: Group-A serum ALT and AST levels were 14.29 ± 2.31 U/L and 160.37 ± 24.74 U/L respectively and increased to 249.6 ± 222.7 U/L and 377.1 ± 173.6 U/L respectively in group-B; group-C ALT and AST ranged 36.75-75.02 U/L and 204.4-290.3 U/L respectively. After paracetamol coadministration with low sunitinib doses (group-D), ALT and AST concentrations ranged 182.79-221.03 U/L and 259.7-264.4 U/L respectively, lower than group-B. Paracetamol coadministration with high sunitinib doses showed higher ALT and AST values (range 269.6-349.2 U/L and 430.2-540.3 U/L respectively), p < 0.05. Hepatic histopathology showed vascular congestion in group-B; mild congestion in group-C (but lesser than in group-B and D). In group-D, at low doses of sunitinib, lesser damage than in group-B occurred but larger changes including congestion were observed at high sunitinib doses. BUN levels were higher (p < 0.05) for group-B (33.81 ± 5.68 mg/dL) and group-D (range 35.01 ± 6.95 U/L to 52.85 ± 12.53 U/L) compared to group-A (15.60 ± 2.17 mg/dL) and group-C (range 17.50 ± 1.25 U/L to 26.68 ± 6.05 U/L). Creatinine remained unchanged. Renal congestion and necrosis was lower in group-C than group-B but was higher in group-D (p > 0.05). Mild cardiotoxicity occurred in groups B, C and D. Brain vascular congestion occurred at high doses of sunitinib administered alone or with paracetamol. Hepatic and renal biomarkers correlated with histopathology signs.
    CONCLUSIONS: Paracetamol and sunitinib coadministration may lead to dose dependent outcomes exhibiting mild hepatoprotective effect or increased hepatotoxicity. Sunitinib at high doses show renal, cardiac and brain toxicity. Liver and renal function monitoring is recommended.
    Matched MeSH terms: Drug-Induced Liver Injury/pathology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links