Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Lim J, Yeap SP, Che HX, Low SC
    Nanoscale Res Lett, 2013;8(1):381.
    PMID: 24011350 DOI: 10.1186/1556-276X-8-381
    Here we provide a complete review on the use of dynamic light scattering (DLS) to study the size distribution and colloidal stability of magnetic nanoparticles (MNPs). The mathematical analysis involved in obtaining size information from the correlation function and the calculation of Z-average are introduced. Contributions from various variables, such as surface coating, size differences, and concentration of particles, are elaborated within the context of measurement data. Comparison with other sizing techniques, such as transmission electron microscopy and dark-field microscopy, revealed both the advantages and disadvantages of DLS in measuring the size of magnetic nanoparticles. The self-assembly process of MNP with anisotropic structure can also be monitored effectively by DLS.
    Matched MeSH terms: Dynamic Light Scattering
  2. Ping BTY, Aziz HA, Idris Z
    J Oleo Sci, 2018;67(3):265-272.
    PMID: 29491321 DOI: 10.5650/jos.ess17164
    High-Performance Liquid Chromatography (HPLC) methods via evaporative light scattering (ELS) and refractive index (RI) detectors are used by the local palm oil industry to monitor the TAG profiles of palm oil and its fractions. The quantitation method used is based on area normalization of the TAG components and expressed as percentage area. Although not frequently used, peak-area ratios based on TAG profiles are a possible qualitative method for characterizing the TAG of palm oil and its fractions. This paper aims to compare these two detectors in terms of peak-area ratio, percentage peak area composition, and TAG elution profiles. The triacylglycerol (TAG) composition for palm oil and its fractions were analysed under similar HPLC conditions i.e. mobile phase and column. However, different sample concentrations were used for the detectors while remaining within the linearity limits of the detectors. These concentrations also gave a good baseline resolved separation for all the TAGs components. The results of the ELSD method's percentage area composition for the TAGs of palm oil and its fractions differed from those of RID. This indicates an unequal response of TAGs for palm oil and its fractions using the ELSD, also affecting the peak area ratios. They were found not to be equivalent to those obtained using the HPLC-RID. The ELSD method showed a better baseline separation for the TAGs components, with a more stable baseline as compared with the corresponding HPLC-RID. In conclusion, the percentage area compositions and peak-area ratios for palm oil and its fractions as derived from HPLC-ELSD and RID were not equivalent due to different responses of TAG components to the ELSD detector. The HPLC-RID has a better accuracy for percentage area composition and peak-area ratio because the TAG components response equally to the detector.
    Matched MeSH terms: Dynamic Light Scattering*
  3. Tham FK, Ng WM, Leong SS, Yeap SP, Low SC, Lee HL, et al.
    Langmuir, 2021 Jan 26.
    PMID: 33496594 DOI: 10.1021/acs.langmuir.0c03153
    Monodispersed iron oxide nanoparticles (IONPs) coated with polystyrenesulfonate (PSS) and cetrimonium bromide (CTAB) have been used to stabilize magnetic Pickering emulsions (MPEs). Magnetophoresis of MPEs under the influence of a low gradient magnetic field (∇B < 100 T/m) was investigated at the macroscopic and microscopic scale. At the macroscopic scale, for the case of pH 7, the MPE achieved a magnetophoretic velocity of 70.9 μm/s under the influence of ∇B at 93.8 T/m. The magnetic separation efficiency of the MPE at 90% was achieved within 30 min for pH 3, 7, and 10. At pH 10, the colloidal stability of the MPE was the lowest compared to that for pH 3 and 7. Thus, MPE at pH 10 required the shortest time for achieving the highest separation efficiency, as the MPE experienced cooperative magnetophoresis at alkaline pH. The creaming rate of the MPE at all conditions was still lower compared to magnetophoresis and was negligible in influencing its separation kinetics profiles. At the microscopic scale, the migration pathways of the MPEs (with diameters between 2.5 and 7.5 μm) undergoing magnetophoresis at ∇B ∼ 13.0 T/m were recorded by an optical microscope. From these experiments, and taking into consideration the MPE size distribution from the dynamic light scattering (DLS) measurement, we determined the averaged microscopic magnetophoretic velocity to be 7.8 ± 5.5 μm/s. By making noncooperative magnetophoresis assumptions (with negligible interactions between the MPEs along their migration pathways), the calculated velocity of individual MPEs was 9.8 μm/s. Such a value was within the percentage error of the experimental result of 7.8 ± 5.5 μm/s. This finding allows for an easy and quick estimation of the magnetophoretic velocity of MPEs at the microscale by using macroscopic separation kinetics data.
    Matched MeSH terms: Dynamic Light Scattering
  4. Wong JC, Xiang L, Ngoi KH, Chia CH, Jin KS, Hirao A, et al.
    Polymers (Basel), 2020 Aug 23;12(9).
    PMID: 32842480 DOI: 10.3390/polym12091894
    Star-shaped polymers are very attractive because of their potential application ability in various technological areas due to their unique molecular topology. Thus, information on the molecular structure and chain characteristics of star polymers is essential for gaining insights into their properties and finding better applications. In this study, we report molecular structure details and chain characteristics of 17-armed polystyrenes in various molecular weights: 17-Arm(2k)-PS, 17-Arm(6k)-PS, 17-Arm(10k)-PS, and 17-Arm(20k)-PS. Quantitative X-ray scattering analysis using synchrotron radiation sources was conducted for this series of star polymers in two different solvents (cyclohexane and tetrahydrofuran), providing a comprehensive set of three-dimensional structure parameters, including radial density profiles and chain characteristics. Some of the structural parameters were crosschecked by qualitative scattering analysis and dynamic light scattering. They all were found to have ellipsoidal shapes consisting of a core and a fuzzy shell; such ellipse nature is originated from the dendritic core. In particular, the fraction of the fuzzy shell part enabling to store desired chemicals or agents was confirmed to be exceptionally high in cyclohexane, ranging from 74 to 81%; higher-molecular-weight star polymer gives a larger fraction of the fuzzy shell. The largest fraction (81%) of the fuzzy shell was significantly reduced to 52% in tetrahydrofuran; in contrast, the lowest fraction (19%) of core was increased to 48%. These selective shell contraction and core expansion can be useful as a key mechanism in various applications. Overall, the 17-armed polystyrenes of this study are suitable for applications in various technological fields including smart deliveries of drugs, genes, biomedical imaging agents, and other desired chemicals.
    Matched MeSH terms: Dynamic Light Scattering
  5. Tajau, R., Wan Yunus, W.M.Z., Mohd Dahlan, K.Z., Mahmood, M.H., Hashim, K., Ismail, M., et al.
    MyJurnal
    This study demonstrated the utilization of radiation-induced initiator methods for the formation of
    nanoparticles of Acrylated Palm Oil (APO) using aqueous Pluronic F-127 (PF-127) microemulsion
    system. This microemulsion system was subjected to gamma irradiation to form the crosslinked APO
    nanoparticles. Dynamic light scattering (DLS), Fourier Transform Infrared (FTIR) spectroscopy and
    Transmission Electron Microscopy (TEM) were used to characterize the size and the chemical structure
    of the nanoparticles. As a result, the size of the APO nanoparticle was decreased when the irradiation
    dose increased. The decrease in size might be due to the effects of intermolecular crosslinking and
    intramolecular crosslinking reactions of the APO nanoparticles during irradiation process. The size of the
    nanoparticle is in the range of 98 to 200 nanometer (nm) after irradiation using gamma irradiator. This radiation-induced method provides a free initiator
    induced and easy to control process as compared
    to the classical or chemical initiator process. The
    study has shown that radiation-induced initiator
    methods, namely, polymerization and crosslinking
    in the microemulsion, were promising for the
    synthesis of nanoparticles.
    Matched MeSH terms: Dynamic Light Scattering
  6. Liyana Mohd Ali Napia, Faizal Mohamed, Hur Munawar Kabir Mohd, Intan Syakeela Ahmad Bastamam, Shamellia Sharin, Norsyahidah Mohd Hidzir, et al.
    Sains Malaysiana, 2018;47:1235-1240.
    Unilamellar liposomes composed of dipalmitoylphosphatidylcholine (DPPC) were prepared by the reverse-phase
    evaporation method and extrusion through a polycarbonate membrane filter. Liposomes at 0.7 mg/mL lipid concentration
    in deionized water were exposed to gamma irradiation at a dose in the range 0.5 to 25 kGy. Gamma irradiation of
    liposomes resulted in the degradation of DPPC lipids into free fatty acids, lysophosphatidylcholine and 1,2-palmitoylphosphatidic
    acid (DPPA). The effect of gamma irradiation towards the physical stability of liposomes was investigated
    by means of dynamic light scattering (DLS), transmission electron microscopy (TEM) and zeta potential analysis. From
    the DLS analysis, no significant changes were observed in the hydrodynamic size of liposomes. TEM images indicate that
    the liposomes surface became smoother and rounder as higher irradiation doses were applied. Zeta potential analysis
    showed that gamma irradiation of DPPC liposomes at radiation doses as low as 0.5 kGy resulted in a drastic rise in the
    magnitude of the zeta potential. The results also demonstrate that gamma irradiation of liposomes suspension enhanced
    the overall stability of liposomes. Hence, it can be concluded that gamma irradiation on DPPC liposomes may potentially
    produce liposomes with higher stability.
    Matched MeSH terms: Dynamic Light Scattering
  7. Mohamad Kasim AS, Ariff AB, Mohamad R, Wong FWF
    Nanomaterials (Basel), 2020 Dec 10;10(12).
    PMID: 33321788 DOI: 10.3390/nano10122475
    Silver nanoparticles (AgNPs) have been found to have extensive biomedical and biological applications. They can be synthesised using chemical and biological methods, and coated by polymer to enhance their stability. Hence, the changes in the physico-chemical characteristics of AgNPs must be scrutinised due to their importance for biological activity. The UV-Visible absorption spectra of polyethylene glycol (PEG) -coated AgNPs displayed a distinctive narrow peak compared to uncoated AgNPs. In addition, High-Resolution Transmission Electron Microscopy analysis revealed that the shapes of all AgNPs, were predominantly spherical, triangular, and rod-shaped. Fourier-Transform Infrared Spectroscopy analysis further confirmed the role of PEG molecules in the reduction and stabilisation of the AgNPs. Moreover, dynamic light scattering analysis also revealed that the polydispersity index values of PEG-coated AgNPs were lower than the uncoated AgNPs, implying a more uniform size distribution. Furthermore, the uncoated and PEG-coated biologically synthesised AgNPs demonstrated antagonisms activities towards tested pathogenic bacteria, whereas no antagonism activity was detected for the chemically synthesised AgNPs. Overall, generalisation on the interrelations of synthesis methods, PEG coating, characteristics, and antimicrobial activity of AgNPs were established in this study.
    Matched MeSH terms: Dynamic Light Scattering
  8. Rabha B, Bharadwaj KK, Baishya D, Sarkar T, Edinur HA, Pati S
    Polymers (Basel), 2021 Apr 18;13(8).
    PMID: 33919483 DOI: 10.3390/polym13081322
    Diosgenin encapsulated PCL-Pluronic nanoparticles (PCL-F68-D-NPs) were developed using the nanoprecipitation method to improve performance in brain cancer (glioblastoma) therapy. The nanoparticles were characterized by dynamic light scattering (DLS)/Zeta potential, Fourier-transform infrared (FTIR) spectra, X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), and Transmission electron microscopy (TEM). The encapsulation efficiency, loading efficiency, and yield were calculated. The in vitro release rate was determined, and the kinetic model of diosgenin release was plotted and ascertained. The cytotoxicity was checked by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide)assay against U87-MG cells (glioblastoma cell lines). The obtained nanoparticles demonstrated good size distribution, stability, morphology, chemical, and mechanical properties. The nanoparticles also possessed high encapsulation efficiency, loading efficiency, and yield. The release rate of Diosgenin was shown in a sustained manner. The in vitro cytotoxicity of PCL-F68-D-NPs showed higher toxicity against U87-MG cells than free Diosgenin.
    Matched MeSH terms: Dynamic Light Scattering
  9. Madihah Ahmad, Bohari M. Yamin, Azwan Mat Lazim
    MyJurnal
    α-Mangostin was extracted from the pericarp of the Malaysian local Garcinia mangostana linn., The structure was characterised by Infrared red, UV-Visible and Nuclear Magnetic Resonance spectroscopic data. The fluorescence peak at 500nm in ethanol was not observed in PNIPAM microgel solution. The increase of colloidal size of the gel in the presence of α-mangostin was studied by Dynamic Light Scattering and Transmission Electron Microscope. The size of the particle also increases with increasing temperature up to 45⁰C after which it began to shrink. The TEM micrograph at 45°C showed a uniformly structured pattern of the gel occurs in the range of the lowest solution critical temperature.
    Matched MeSH terms: Dynamic Light Scattering
  10. Nasima Akter, Shahidan Radiman, Faizal Mohamed, Nazaruddin Ramly, Putra EGR, Rini AS
    Sains Malaysiana, 2014;43:203-209.
    Kappa-carrageenan is one form of necessary hydrocolloid. Hydrocolloids are macromolecular materials, which swell upon absorption of water; in some cases, forming a stiff gel in the presence of additives. This property is very important to suspend nanocarriers into gel network, which provide them long time stability at a varying temperature range. In this work, we prepared microemulsion and trapped these particles inside the kappa-carrageenan gel network. The microemulsion was composed of sodium N-lauroylsarcosinate hydrate (SNLS), oleic acid and deionized water. The purpose of this study was to immobilize them into the gel network, giving longer shelf life at a range of temperatures for oral drug delivery. Morphological properties were investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and Fourier transform infrared (FTIR) spectra. The TEM results showed that microemulsions are trapped in the gel network, and the diameter of the microemulsions are below 100 nm, which is comparable with the DLS results. The important functional groups of kappa-carrageenan and microemulsion were shown from the FTIR result of the complex microemulsion gel. These results confirmed the interaction between SNLS based microemulsion and kappa- carrageenan gel.
    Matched MeSH terms: Dynamic Light Scattering
  11. Mohd Hafez Mohd Isa, Frazier AR, Jauregi P
    Sains Malaysiana, 2012;41:1117-1124.
    Biosurfactants are microbially produced surface active agents that offer better biodegradability and lower toxicity than chemically synthesized surfactants because of their biogenetic origin. One of the most surface-active biosurfactants known is surfactin, a cyclic lipopeptide produced by various strains of Bacillus subtilis. In this study, the cleaning potential of surfactin on ultrafiltration (UF) membranes fouled with BSA was studied using centrifugal UF devices of 50 kDa and 100 kDa MWCO polyethersulfone (PES) membranes. Mechanisms of bovine serum albumin (BSA) displacement by surfactin on fouled UF membranes were studied using dynamic light scattering (DLS) technique and surface tension measurements. Hydrodynamic diameter and surface tension measurements of BSA-surfactin mixtures showed that the surfactin was efficient in displacing BSA fouled on UF membranes due to strong electrostatic repulsive interactions involved at pH8.5. This study demonstrated that surfactin can be used to effectively clean fouled UF membranes.
    Matched MeSH terms: Dynamic Light Scattering
  12. Wong JC, Xiang L, Ngoi KH, Chia CH, Jin KS, Ree M
    Polymers (Basel), 2020 Feb 19;12(2).
    PMID: 32093008 DOI: 10.3390/polym12020477
    A series of polystyrene nanoparticles (PS-1, PS-2, PS-3, and PS-4) in aqueous solutions were investigated in terms of morphological structure, size, and size distribution. Synchrotron small-angle X-ray scattering analysis (SAXS) was carried out, providing morphology details, size and size distribution on the particles. PS-1, PS-2, and PS-3 were confirmed to behave two-phase (core and shell) spherical shapes, whereas PS-4 exhibited a single-phase spherical shape. They all revealed very narrow unimodal size distributions. The structural parameter details including radial density profile were determined. In addition, the presence of surfactant molecules and their assemblies were detected for all particle solutions, which could originate from their surfactant-assisted emulsion polymerizations. In addition, dynamic light scattering (DLS) analysis was performed, finding only meaningful hydrodynamic size and intensity-weighted mean size information on the individual PS solutions because of the particles' spherical nature. In contrast, the size distributions were extracted unrealistically too broad, and the volume- and number-weighted mean sizes were too small, therefore inappropriate to describe the particle systems. Furthermore, the DLS analysis could not detect completely the surfactant and their assemblies present in the particle solutions. Overall, the quantitative SAXS analysis confirmed that the individual PS particle systems were successfully prepared with spherical shape in a very narrow unimodal size distribution.
    Matched MeSH terms: Dynamic Light Scattering
  13. Amjad MW, Amin MC, Katas H, Butt AM
    Nanoscale Res Lett, 2012;7(1):687.
    PMID: 23270381 DOI: 10.1186/1556-276X-7-687
    Doxorubicin-loaded micelles were prepared from a copolymer comprising cholic acid (CA) and polyethyleneimine (PEI) for the delivery of antitumor drugs. The CA-PEI copolymer was synthesized via pairing mediated by N,N'-dicyclohexylcarbodiimide and N-hydroxysuccinimide using dichloromethane as a solvent. Fourier transform infrared and nuclear magnetic resonance analyses were performed to verify the formation of an amide linkage between CA and PEI and doxorubicin localization into the copolymer. Dynamic light scattering and transmission electron microscopy studies revealed that the copolymer could self-assemble into micelles with a spherical morphology and an average diameter of <200 nm. The CA-PEI copolymer was also characterized by X-ray diffraction and differential scanning calorimetry. Doxorubicin-loaded micelles were prepared by dialysis method. A drug release study showed reduced drug release with escalating drug content. In a cytotoxicity assay using human colorectal adenocarcinoma (DLD-1) cells, the doxorubicin-loaded CA-PEI micelles exhibited better antitumor activity than that shown by doxorubicin. This is the first study on CA-PEI micelles as doxorubicin carriers, and this study demonstrated that they are promising candidates as carriers for sustained targeted antitumor drug delivery system.
    Matched MeSH terms: Dynamic Light Scattering
  14. Adebayo IA, Usman AI, Shittu FB, Ismail NZ, Arsad H, Muftaudeen TK, et al.
    Bioinorg Chem Appl, 2020;2020:8898360.
    PMID: 33029114 DOI: 10.1155/2020/8898360
    Background: Acute myeloid leukemia (AML) persists to be a major health problem especially among children as effective chemotherapy to combat the disease is yet to be available. Boswellia dalzielii is a well-known herb that is traditionally used for treatment and management of many diseases including degenerative diseases. In this study, silver nanoparticles were synthesized from the phytochemicals of B. dalzielii stem bark aqueous extract. The silver nanoparticles were characterized by carrying out Fourier Transform Infrared (FTIR) spectroscopy, Energy Filtered Scanning Electron Microscopy (FESEM), X-ray diffraction, and Dynamic Light Scattering (DLS) analyses. Antioxidant capacity of the nanoparticles was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, and the antiproliferative effect of the nanoparticles on Kasumi-1 leukemia cells was investigated using PrestoBlue assay. Flow cytometry analysis was performed to observe the effect of the nanoparticles on the leukemia cell cycle progression.

    Results: Our findings revealed that the synthesized silver nanoparticles were formed from electrons of the plant phytochemicals which include aromatic compounds, ethers, and alkynes. FESEM analysis revealed that the sizes of the nanoparticles range from 12 nm to 101 nm; however, DLS analysis estimated a larger average size of the nanoparticles (108.3 nm) because it measured the hydrodynamic radii of the nanoparticles. The zeta potential of the nanoparticles was -16 nm, and the XRD pattern of the nanoparticles has distinct peaks at 38.02°, 42.94°, 64.45°, 77.20°, and 81.47°, which is typical of face-centered cubic (fcc) structure of silver. The Trolox Equivalence Antioxidant Capacity (TEAC) of the nanoparticles was estimated to be 300.91 μM Trolox/mg silver nanoparticles. The nanoparticles inhibited Kasumi-1 cell proliferation. The half minimal inhibitory concentrations (IC50s) that inhibited Kasumi-1 cell proliferation are 49.5 μg/ml and 13.25 μg/ml at 48 and 72 hours, respectively. The nanoparticles induced cell cycle arrest in the Kasumi-1 cells at S (5% increase) and G2/M (3% increase) phases.

    Conclusion: The nanoparticles synthesized from the stem bark extract of B. dalzielii inhibit the growth of Kasumi-1 leukemia cells by activating cell cycle arrest; thus, they are potential antileukemic agents.

    Matched MeSH terms: Dynamic Light Scattering
  15. Rosman NSR, Harun NA, Idris I, Ismail WIW
    Heliyon, 2020 Nov;6(11):e05462.
    PMID: 33241146 DOI: 10.1016/j.heliyon.2020.e05462
    The non-hazardous silver nanoparticles (AgNPs) synthesised using the extract of a biological organism has gained widespread attention for various applications, mainly in healthcare. This study aimed at synthesising AgNPs using the aqueous extract of Marphysa moribidii (Annelida, Polychaeta) and to evaluate their antibacterial activities. AgNPs were synthesised in response to silver nitrate (AgNO3) with polychaete crude extract for 24 h incubation; the polychaete crude extract acted as both reducing and stabilising agents. The presence of biosynthesised AgNPs was confirmed by an analysis of colour variations from pinkish to yellowish-brown, as well as the appearance of surface Plasmon resonance (SPR) bands at 398-400 nm using ultraviolet-visible spectroscopy. Biosynthesised AgNPs were characterised by dynamic light scattering, scanning electron microscope, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Biosynthesised AgNPs showed a significant effect (p < 0.05) on Gram-positive bacteria (Staphylococcus aureus and S.epidermidis) and Gram-negative bacteria (Escherichia coli, Klebsiella pnemoniae, Salmonella typhimurium, Serratia sp., Shigella sonnei, and Pseudomonas aeruginosa). Thus, the crude extract of M. moribidii has a potential as a reducing agent for the development of future nanometal-based antibacterial agent, AgNPs, for the treatment of infectious diseases caused by pathogenic bacteria.
    Matched MeSH terms: Dynamic Light Scattering
  16. Abu N, Othman N, Ab Razak NS, Bakarurraini NAAR, Nasir SN, Soh JEC, et al.
    Front Cell Dev Biol, 2020;8:564648.
    PMID: 33324632 DOI: 10.3389/fcell.2020.564648
    Colorectal cancer (CRC) is one of the most widely diagnosed cancers worldwide. It has been shown that the body-mass index (BMI) of the patients could influence the tumor microenvironment, treatment response, and overall survival rates. Nevertheless, the mechanism on how BMI affects the tumorigenesis process, particularly the tumor microenvironment is still elusive. Herein, we postulate that extracellular vesicles (EVs) from CRC patients and non-CRC volunteers with different BMI could affect immune cells differently, in CD8 T cells particularly. We isolated the EVs from the archived serum of CRC patients with high and low BMI, as well as healthy controls with similar BMI status. The EVs were further characterized via electron microscopy, western blot and dynamic light scattering. Then, functional analysis was performed on CD8 T cells including apoptosis, cell proliferation, gene expression profiling and cytokine release upon co-incubation with the different EVs. Our results suggest that CRC-derived EVs were able to regulate the CD8 T cells. In some assays, low BMI EVs were functionally different than high BMI EVs. This study highlights the possible difference in the regulatory mechanism of cancer patients-derived EVs, especially on CD8 T cells.
    Matched MeSH terms: Dynamic Light Scattering
  17. Chong LC, Ganesan H, Yong CY, Tan WS, Ho KL
    PLoS One, 2019;14(2):e0211740.
    PMID: 30707739 DOI: 10.1371/journal.pone.0211740
    Macrobrachium rosenbergii nodavirus (MrNV) is the causative agent of white tail disease (WTD) which seriously impedes the production of the giant freshwater prawn and has a major economic impact. MrNV contains two segmented RNA molecules, which encode the RNA dependent RNA polymerase (RdRp) and the capsid protein (MrNV-CP) containing 371 amino acid residues. MrNV-CP comprises of the Shell (S) and the Protruding (P) domains, ranging from amino acid residues 1-252 and 253-371, respectively. The P-domain assembles into dimeric protruding spikes, and it is believed to be involved in host cell attachment and internalization. In this study, the recombinant P-domain of MrNV-CP was successfully cloned and expressed in Escherichia coli, purified with an immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC) up to ~90% purity. Characterization of the purified recombinant P-domain with SEC revealed that it formed dimers, and dynamic light scattering (DLS) analysis demonstrated that the hydrodynamic diameter of the dimers was ~6 nm. Circular dichroism (CD) analysis showed that the P-domain contained 67.9% of beta-sheets, but without alpha-helical structures. This is in good agreement with the cryo-electron microscopic analysis of MrNV which demonstrated that the P-domain contains only beta-stranded structures. Our findings of this study provide essential information for the production of the P-domain of MrNV-CP that will aid future studies particularly studies that will shed light on anti-viral drug discovery and provide an understanding of virus-host interactions and the viral pathogenicity.
    Matched MeSH terms: Dynamic Light Scattering
  18. Amarnath Praphakar R, Jeyaraj M, Ahmed M, Suresh Kumar S, Rajan M
    Int J Biol Macromol, 2018 Oct 15;118(Pt B):1627-1638.
    PMID: 29981824 DOI: 10.1016/j.ijbiomac.2018.07.008
    Recently, drug functionalized biodegradable polymers have been appreciated to be imperative to fabricate multi-drug delivery nanosystems for sustainable drug release. In this work, amphiphilic chitosan-grafted-(cetyl alcohol-maleic anhydride-pyrazinamide) (CS-g-(CA-MA-PZA)) was synthesized by multi-step reactions. The incorporation of rifampicin (RF) and entrapment of silver nanoparticles (Ag NPs) on CS-g-(CA-MA-PZA) polymer was carried out by dialysis technique. From the FT-IR experiment, the polymer modification, incorporation of drugs and the entrapment of Ag NPs on micelles were confirmed. The surface morphology of Ag NPs, polymeric system and drug loaded micelles was described by SEM, TEM and AFM techniques. In addition, the controlled release behaviour of CS-g-(CA-MA-PZA) micelles was studied by UV-Vis spectroscopy. In vitro cell viability, cell apoptosis and cellular uptake experiments shows that multi-drug delivery system could enhance the biocompatibility and higher the cytotoxicity effect on the cells. Since the prepared amphiphilic polymeric micelles exhibit spotty features and the system is a promising strategy for a novel candidate for immediate therapeutically effects for alveolar macrophages.
    Matched MeSH terms: Dynamic Light Scattering
  19. Fam SY, Chee CF, Yong CY, Ho KL, Mariatulqabtiah AR, Lau HY, et al.
    Int J Mol Sci, 2019 Oct 03;20(19).
    PMID: 31623310 DOI: 10.3390/ijms20194903
    Virus-like nanoparticles (VLNPs) have been studied extensively as nanocarriers for targeted drug delivery to cancer cells. However, VLNPs have intrinsic drawbacks, in particular, potential antigenicity and immunogenicity, which hamper their clinical applications. Thus, they can be eliminated easily and rapidly by host immune systems, rendering these nanoparticles ineffective for drug delivery. The aim of this study was to reduce the antigenicity of hepatitis B core antigen (HBcAg) VLNPs by shielding them with a hydrophilic polymer, poly(2-ethyl-2-oxazoline) (PEtOx). In the present study, an amine-functionalized PEtOx (PEtOx-NH2) was synthesized using the living cationic ring-opening polymerization (CROP) technique and covalently conjugated to HBcAg VLNPs via carboxyl groups. The PEtOx-conjugated HBcAg (PEtOx-HBcAg) VLNPs were characterized with dynamic light scattering and UV-visible spectroscopy. The colloidal stability study indicated that both HBcAg and PEtOx-HBcAg VLNPs maintained their particle size in Tris-buffered saline (TBS) at human body temperature (37 °C) for at least five days. Enzyme-linked immunosorbent assays (ELISA) demonstrated that the antigenicity of PEtOx-HBcAg VLNPs reduced significantly as compared with unconjugated HBcAg VLNPs. This novel conjugation approach provides a general platform for resolving the antigenicity of VLNPs, enabling them to be developed into a variety of nanovehicles for targeted drug delivery.
    Matched MeSH terms: Dynamic Light Scattering
  20. Jacob PJ, Masarudin MJ, Hussein MZ, Rahim RA
    Microb Cell Fact, 2017 Oct 11;16(1):175.
    PMID: 29020992 DOI: 10.1186/s12934-017-0789-3
    BACKGROUND: Iron based ferromagnetic nanoparticles (IONP) have found a wide range of application in microelectronics, chemotherapeutic cell targeting, and as contrast enhancers in MRI. As such, the design of well-defined monodisperse IONPs is crucial to ensure effectiveness in these applications. Although these nanostructures are currently manufactured using chemical and physical processes, these methods are not environmentally conducive and weigh heavily on energy and outlays. Certain microorganisms have the innate ability to reduce metallic ions in aqueous solution and generate nano-sized IONP's with narrow size distribution. Harnessing this potential is a way forward in constructing microbial nanofactories, capable of churning out high yields of well-defined IONP's with physico-chemical characteristics on par with the synthetically produced ones.

    RESULTS: In this work, we report the molecular characterization of an actinomycetes, isolated from tropical freshwater wetlands sediments, that demonstrated rapid aerobic extracellular reduction of ferric ions to generate iron based nanoparticles. Characterization of these nanoparticles was carried out using Field Emission Scanning Electron Microscope with energy dispersive X-ray spectroscopy (FESEM-EDX), Field Emission Transmission Electron Microscope (FETEM), Ultraviolet-Visible (UV-Vis) Spectrophotometer, dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FTIR). This process was carried out at room temperature and humidity and under aerobic conditions and could be developed as an environmental friendly, cost effective bioprocess for the production of IONP's.

    CONCLUSION: While it is undeniable that iron reducing microorganisms confer a largely untapped resource as potent nanofactories, these bioprocesses are largely anaerobic and hampered by the low reaction rates, highly stringent microbial cultural conditions and polydispersed nanostructures. In this work, the novel isolate demonstrated rapid, aerobic reduction of ferric ions in its extracellular matrix, resulting in IONPs of relatively narrow size distribution which are easily extracted and purified without the need for convoluted procedures. It is therefore hoped that this isolate could be potentially developed as an effective nanofactory in the future.

    Matched MeSH terms: Dynamic Light Scattering
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links