Displaying publications 1 - 20 of 330 in total

Abstract:
Sort:
  1. Agus Kartono, Mustafa Mamat
    Sains Malaysiana, 2013;42:333-340.
    Differential cross sections for excitation to the n=2 states of atomic helium by electrons were computed for incident energies in the range from 30 to 50 eV. The n=2 states excitation cross sections are calculated with the use of closecoupling expansion with a non-orthogonal Laguerre-L2 basis function. The present status of agreement between theory and experiment for excitation of the ground-state was quite satisfactory.
    Matched MeSH terms: Electrons
  2. Khan MZ, Ling YS, Yaqoob I, Kumar NN, Kuang LL, San WC
    ScientificWorldJournal, 2014;2014:240729.
    PMID: 25544952 DOI: 10.1155/2014/240729
    A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 10(16)/m(3), respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences.
    Matched MeSH terms: Electrons*
  3. Neves RF, Jones DB, Lopes MC, Blanco F, García G, Ratnavelu K, et al.
    J Chem Phys, 2015 May 21;142(19):194305.
    PMID: 26001459 DOI: 10.1063/1.4921313
    We report on measurements of integral cross sections (ICSs) for electron impact excitation of a series of composite vibrational modes and electronic-states in phenol, where the energy range of those experiments was 15-250 eV. There are currently no other results against which we can directly compare those measured data. We also report results from our independent atom model with screened additivity rule correction computations, namely, for the inelastic ICS (all discrete electronic states and neutral dissociation) and the total ionisation ICS. In addition, for the relevant dipole-allowed excited electronic states, we also report f-scaled Born-level and energy-corrected and f-scaled Born-level (BEf-scaled) ICS. Where possible, our measured and calculated ICSs are compared against one another with the general level of accord between them being satisfactory to within the measurement uncertainties.
    Matched MeSH terms: Electrons*
  4. Hashim AM, Mustafa F, Rahman SF, Rahman AR
    Sensors (Basel), 2011;11(8):8127-42.
    PMID: 22164066 DOI: 10.3390/s110808127
    A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device's good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.
    Matched MeSH terms: Electrons
  5. Rizwan K, Rasool N, Rehman R, Mahmood T, Ayub K, Rasheed T, et al.
    Chem Cent J, 2018 Jul 17;12(1):84.
    PMID: 30019193 DOI: 10.1186/s13065-018-0451-0
    A variety of imine derivatives have been synthesized via Suzuki cross coupling of N-(4-bromophenyl)-1-(3-bromothiophen-2-yl)methanimine with various arylboronic acids in moderate to good yields (58-72%). A wide range of electron donating and withdrawing functional groups were well tolerated in reaction conditions. To explore the structural properties, Density functional theory (DFT) investigations on all synthesized molecules (3a-3i) were performed. Conceptual DFT reactivity descriptors and molecular electrostatic potential analyses were performed by using B3LYP/6-31G(d,p) method to explore the reactivity and reacting sites of all derivatives (3a-3i).
    Matched MeSH terms: Electrons
  6. Khamees HA, Chaluvaiah K, El-Khatatneh NA, Swamynayaka A, Chong KH, Dasappa JP, et al.
    Acta Crystallogr E Crystallogr Commun, 2019 Nov 01;75(Pt 11):1620-1626.
    PMID: 31709079 DOI: 10.1107/S2056989019013410
    The title imidazo[1,2-a] pyridine derivative, C13H8Br2N2, was synthesized via a single-step reaction method. The title mol-ecule is planar, showing a dihedral angle of 0.62 (17)° between the phenyl and the imidazo[1,2-a] pyridine rings. An intra-molecular C-H⋯N hydrogen bond with an S(5) ring motif is present. In the crystal, a short H⋯H contact links adjacent mol-ecules into inversion-related dimers. The dimers are linked in turn by weak C-H⋯π and slipped π-π stacking inter-actions, forming layers parallel to (110). The layers are connected into a three-dimensional network by short Br⋯H contacts. Two-dimensional fingerprint plots and three-dimensional Hirshfeld surface analysis of the inter-molecular contacts reveal that the most important contributions for the crystal packing are from H⋯Br/Br⋯H (26.1%), H⋯H (21.7%), H⋯C/C⋯H (21.3%) and C⋯C (6.5%) inter-actions. Energy framework calculations suggest that the contacts formed between mol-ecules are largely dispersive in nature. Analysis of HOMO-LUMO energies from a DFT calculation reveals the pure π character of the aromatic rings with the highest electron density on the phenyl ring, and σ character of the electron density on the Br atoms. The HOMO-LUMO gap was found to be 4.343 eV.
    Matched MeSH terms: Electrons
  7. Chong EL, Ishak Ahmad, Ibrahim Abdullah, Dahlan Mohd
    Sains Malaysiana, 2011;40:1123-1127.
    Serbuk sekam padi (SP) merupakan serabut semula jadi yang boleh bertindak sebagai pengisi penguat dalam adunan getah asli termoplastik (TPNR) NR/HDPE selepas permukaan serbuk dimodifikasikan sewajarnya. Rawatan serbuk SP merangkumi pra-rawatan dengan 5% larutan natrium hidroksida (NaOH), rendaman dalam larutan getah asli cecair (LNR) dan dedahan SP tersalut LNR kepada sinaran electron (EB). Komposit TPNR/SP disediakan secara pengadunan leburan dalam pengadun dalaman pada keadaan yang telah ditentupastikan terlebih dahulu. Morfologi komposit yang dianalisis menggunakan mikroskop elektron imbasan (SEM), menunjukkan taburan zarah pengisi SP termodifikasi adalah homogen dan kewujudan interaksi matriks-zarah. Komposit terisi SP terubahsuai LNR-EB menunjukan perubahan sifat mekanik yang ketara. Nilai maksimum tegasan dan kekuatan impak adalah masing masing 6.7 MPa dan 13.2 kJ/cm2 pada dedahan 20 kGy dos EB, manakala modulus regangan adalah 79 MPa pada dos 30 kGy. Ini menunjukkan terdapat peningkatan interaksi berkesan antara-muka SP dan TPNR bagi SP terwat LNR pada dos 20-30kGy EB. Peningkatan dos EB pada SP tersalut LNR menyebabkan degradasi salutan NR dan meningkatakan interaksi antara zarah SP. Pengaglomerasian zarah SP akan berlaku dan menyebabkan serakan zarah dalam komposit menjadi tidak homogen.
    Matched MeSH terms: Electrons
  8. Robson RE, Brunger MJ, Buckman SJ, Garcia G, Petrović ZLj, White RD
    Sci Rep, 2015 Aug 06;5:12674.
    PMID: 26246002 DOI: 10.1038/srep12674
    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the 'gas-phase' assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations.
    Matched MeSH terms: Electrons*
  9. Costa F, Traoré-Dubuis A, Álvarez L, Lozano AI, Ren X, Dorn A, et al.
    Int J Mol Sci, 2020 Sep 22;21(18).
    PMID: 32971806 DOI: 10.3390/ijms21186947
    Electron scattering cross sections for pyridine in the energy range 0-100 eV, which we previously measured or calculated, have been critically compiled and complemented here with new measurements of electron energy loss spectra and double differential ionization cross sections. Experimental techniques employed in this study include a linear transmission apparatus and a reaction microscope system. To fulfill the transport model requirements, theoretical data have been recalculated within our independent atom model with screening corrected additivity rule and interference effects (IAM-SCAR) method for energies above 10 eV. In addition, results from the R-matrix and Schwinger multichannel with pseudopotential methods, for energies below 15 eV and 20 eV, respectively, are presented here. The reliability of this complete data set has been evaluated by comparing the simulated energy distribution of electrons transmitted through pyridine, with that observed in an electron-gas transmission experiment under magnetic confinement conditions. In addition, our representation of the angular distribution of the inelastically scattered electrons is discussed on the basis of the present double differential cross section experimental results.
    Matched MeSH terms: Electron Transport; Electrons*
  10. Guo X, Sun C, Lin R, Xia A, Huang Y, Zhu X, et al.
    J Hazard Mater, 2020 11 15;399:122830.
    PMID: 32937692 DOI: 10.1016/j.jhazmat.2020.122830
    Stimulating direct interspecies electron transfer with conductive materials is a promising strategy to overcome the limitation of electron transfer efficiency in syntrophic methanogenesis of industrial wastewater. This paper assessed the impact of conductive foam nickel (FN) supplementation on syntrophic methanogenesis and found that addition of 2.45 g/L FN in anaerobic digestion increased the maximum methane production rate by 27.4 % (on day 3) while decreasing the peak production time by 33 % as compared to the control with no FN. Cumulative methane production from day 2 to 6 was 14.5 % higher with addition of 2.45 g/L FN than in the control. Levels of FN in excess of 2.45 g/L did not show benefits. Cyclic voltammetry results indicated that the biofilm formed on the FN could generate electrons. The dominant bacterial genera in suspended sludge were Dechlorobacter and Rikenellaceae DMER64, whereas that in the FN biofilm was Clostridium sensu stricto 11. The dominant archaea Methanosaeta in the FN biofilm was enriched by 14.1 % as compared to the control.
    Matched MeSH terms: Electron Transport; Electrons*
  11. Yanagihara M, Tsuji T, Yusop MZ, Tanemura M, Ono S, Nagami T, et al.
    ScientificWorldJournal, 2014;2014:309091.
    PMID: 25302320 DOI: 10.1155/2014/309091
    A vacuum ultraviolet (VUV) field emission lamp was developed by using a neodymium ion doped lutetium fluoride (Nd(3+) : LuF3) thin film as solid-state phosphor and carbon nanofiber field electron emitters. The thin film was synthesized by pulsed laser deposition and incorporated into the lamp. The cathodoluminescence spectra of the lamp showed multiple emission peaks at 180, 225, and 255 nm. These emission spectra were in good agreement with the spectra reported for the Nd(3+) : LuF3 crystal. Moreover, application of an acceleration voltage effectively increased the emission intensity. These results contribute to the performance enhancement of the lamp operating in the VUV region.
    Matched MeSH terms: Electrons*
  12. Das Arulsamy A, Kregar Z, Eleršič K, Modic M, Subramani US
    Phys Chem Chem Phys, 2011 Sep 7;13(33):15175-81.
    PMID: 21776515 DOI: 10.1039/c1cp20138g
    Hydrogen produced from the photocatalytic splitting of water is one of the reliable alternatives to replace the polluting fossil and the radioactive nuclear fuels. Here, we provide unequivocal evidence for the existence of blue- and red-shifting O-H covalent bonds within a single water molecule adsorbed on the MgO surface as a result of asymmetric displacement polarizabilities. The adsorbed H-O-H on MgO gives rise to one weaker H-O bond, while the other O-H covalent bond from the same adsorbed water molecule compensates this effect with a stronger bond. The weaker bond (nearest to the surface), the interlayer tunneling electrons and the silver substrate are shown to be the causes for the smallest dissociative activation energy on the MgO monolayer. The origin that is responsible to initiate the splitting mechanism is proven to be due to the changes in the polarizability of an adsorbed water molecule, which are further supported by the temperature-dependent static dielectric constant measurements for water below the first-order electronic-phase transition temperature.
    Matched MeSH terms: Electrons*
  13. Youssouf AS, Hasbullah NF, Saidin N, Habaebi MH, Parthiban R, Bin Mohamed Zin MR, et al.
    PLoS One, 2021;16(12):e0259649.
    PMID: 34972119 DOI: 10.1371/journal.pone.0259649
    This paper provides the details of a study on the effects of electron radiation on the Performance of Inters-satellite Optical Wireless Communication (IsOWC). Academia and industry focus on solutions that can improve performance and reduce the cost of IsWOC systems. Spacecraft, space stations, satellites, and astronauts are exposed to an increased level of radiation when in space, so it is essential to evaluate the risks and performance effects associated with extended radiation exposures in missions and space travel in general. This investigation focuses on LEO, especially in the near-equatorial radiation environment. Radiation experiments supported with simulations have made it possible to obtain and evaluate the electron radiation impact on optoelectronics at the device level and system level performances. The electron radiation has induced a system degradation of 70%. This result demonstrates the importance of such an investigation to predict and take necessary and suitable reliable quality service for future space missions.
    Matched MeSH terms: Electrons*
  14. San YT, Kandaiya S, Sing CL
    Appl Radiat Isot, 2005 Oct;63(4):437-42.
    PMID: 16051493
    An optical scanner system, which incorporates a He-Ne laser, photodiode detectors, and a platform for placing film, was built in the laboratory. The laser system operates at the green wavelength of 543.5 nm and functions as a scanning densitometer for measurement of optical changes in a film resulting from irradiation . The central axis electron depth dose of selected electron energies 10,12 and 14 MeV were analysed using Kodak X-Omat and Kodak Extended Dose Range (EDR2) films. The Kodak X-Omat film is routinely used for high-energy electron dose distributions in radiation therapy. The electron depth-dose measured with X-Omat film was found to agree well with standard depth-dose curves in water, obtained using an ion chamber. Conversely, the recently introduced Kodak EDR2 showed an energy dependence for electron beams, the percentage depth-dose curve shifting towards the surface for 12 and 14 MeV electron beams compared to that in water.
    Matched MeSH terms: Electrons
  15. Lim TY, Wagiran H, Hussin R, Hashim S
    Appl Radiat Isot, 2015 Aug;102:10-4.
    PMID: 25933405 DOI: 10.1016/j.apradiso.2015.04.005
    The paper presents the thermoluminescence (TL) response of strontium tetraborate glass subjected to electron irradiations at various Dy2O3 concentrations ranging from 0.00 to 1.00mol%. All glass samples exhibited single broad peak with maximum peak temperature positioned at 170-215°C. The optimum TL response was found at Dy2O3 concentration 0.75mol%. This glass showed good linearity and higher sensitivity for 7MeV compared to 6MeV electrons. Analysis of kinetic parameters showed that the glasses demonstrate second order kinetic.
    Matched MeSH terms: Electrons
  16. Selambakkannu, Sarala, Bakar, Khomsaton Abu, Ming, Ting Teo, Jamaliah Sharif
    MyJurnal
    In this studies gamma and electron beam irradiation was used to treat textile waste water. Comparisons between both types of irradiation in terms of effectiveness to degrade the pollutants present in textile waste water were done. Prior to irradiation, the raw wastewater was diluted using distilled water to a target concentration of COD 400 mg/l. The sample was irradiated at selected doses between the ranges of 10 kGy to 100 kGy. The results showed that irradiation has significantly contributed in the reduction of the highly colored refractory organic pollutants. The COD removal at the lowest dose, 10 kGy was reduced to 390 mg/l for gamma and 400 mg/l for electron beam. Meanwhile, at the highest dose, 100 kGy, the COD was reduced to 125 mg/l for gamma and 144 mg/l for electron beam. The degree of removal is influenced by the dose introduced during the treatment process. As the dose increased, the higher the removal of organic pollutant was recorded. However, gamma irradiation is more effective although the differences are not significant between gamma and electron beam irradiation. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color also shows a gradual decrease as the dose increases for both types of irradiation.
    Matched MeSH terms: Electrons
  17. Zaidi Embong
    MyJurnal
    This review briefly describes some of the techniques available for analysing surfaces and illustrates their usefulness with a few examples such as a metal and alloy. In particular, Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and laser Raman spectroscopy are all described as advanced surface analytical techniques. In analysing a surface, AES and XPS would normally be considered first, with AES being applied where high spatial resolution is required and XPS where chemical state information is needed. Laser Raman spectroscopy is useful for determining molecular bonding. A combination of XPS, AES and Laser Raman spectroscopy can give quantitative analysis from the top few atomic layers with a lateral spatial resolution of
    Matched MeSH terms: Electrons
  18. Pornsuwancharoen N, Youplao P, Amiri IS, Aziz MS, Tran QL, Ali J, et al.
    Microsc Res Tech, 2018 Aug;81(8):872-877.
    PMID: 29737596 DOI: 10.1002/jemt.23049
    A conventional Michelson interferometer is modified and used to form the various types of interferometers. The basic system consists of a conventional Michelson interferometer with silicon-graphene-gold embedded between layers on the ports. When light from the monochromatic source is input into the system via the input port (silicon waveguide), the change in optical path difference (OPD) of light traveling in the stacked layers introduces the change in the optical phase, which affects to the electron mean free path within the gold layer, induces the change in the overall electron mobility can be seen by the interferometer output visibility. Further plasmonic waves are introduced on the graphene thin film and the electron mobility occurred within the gold layer, in which the light-electron energy conversion in terms of the electron mobility can be observed, the gold layer length is 100 nm. The measurement resolution in terms of the OPD of

    50 nm is achieved. In applications, the outputs of the drop port device of the modified Michelson interferometer can be arranged by the different detectors, where the polarized light outputs, the photon outputs, the electron spin outputs can be obtained by the interference fringe visibility, mobility visibility and the spin up-down splitting output energies. The modified Michelson interferometer theory and the detection schemes are given in details.
    Matched MeSH terms: Electrons
  19. Tung J, Tew LS, Coluccini C, Lin YD, Khung YL
    Chemistry, 2018 Jun 22.
    PMID: 29932257 DOI: 10.1002/chem.201802003
    This work reports the outcome of thermal grafting of 2-ethynylaniline, 3-ethynylaniline, and 4-ethynylaniline on a hydrogenated Si(100) surface. Using high-resolution XPS and AFM, it was found that the grafting of these compounds could be attributed to resonating structures that arise from the position of an electron-donating NH2 group and an electron-withdrawing acetylene group. For the ortho- and para-positioned acetylene group, surface reactions were observed to proceed predominantly via the acetylene to form a Si-C bond, whereas the meta-positioned acetylene group was found to have undergone nucleophilic grafting through the NH2 group onto the silicon surface to form a Si-N bond. Furthermore, a tert-butoxycarbonyl-protected derivative for a meta-positioned ethynylaniline was synthesized to exclusively force the reaction to react with the acetylene group and subsequent analysis confirmed that unprotected 3-ethynylaniline had indeed reacted through the nucleophilic NH2 group as hypothesized. Thus, for the first time, the interplay between resonance structures and their effects on silicon surface modifications were systematically catalogued.
    Matched MeSH terms: Electrons
  20. Mohd Fahmi Mohd Yusof, Nur Amirah Nabila Ramli, Mohd Fahrizuan Md Yusop, Reduan Abdullah
    MyJurnal
    This study evaluates the ImageJ software as dosimetric tools for analyzing the film dosimeter in high energy photons and electrons. The percentage depth dose of photons of 6 and 10 MV and electrons of 6 and 9 MeV were measured using the Gafchromic EBT2 film dosimeter. The films were scanned and analyzed using the Verisoft software and ImageJ. The beam profiles at nominal photon and electron beam parameters were also evaluated using the two methods. The PDD measured in ImageJ at high energy photons were in good agreement within 1% percentage of discrepancy at all depths in comparison to the Verisoft software. The PDD measured in ImageJ at high energy electrons also showed good agreement to Verisoft software within 8% percentage of discrepancy at all depths. The measured flatness of beam profiles at Dmax, R50, R80 and R90 in ImageJ were also in good agreement to Verisoft software with flatness value between 4 and 8%. The results indicated the suitability of ImageJ software as dosimetric tool for analyzing EBT2 film dosimeter at high energy photon and electrons.
    Matched MeSH terms: Electrons
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links