Displaying publications 1 - 20 of 48 in total

Abstract:
Sort:
  1. Musa SM, Czachur MV, Shiels HA
    PLoS One, 2018;13(11):e0206984.
    PMID: 30399186 DOI: 10.1371/journal.pone.0206984
    Embryological stages of oviparous elasmobranch during development can be difficult to identify, requiring magnification and/or fixation of an anaesthetized embryo. These restrictions are poorly suited for monitoring the development of living elasmobranchs inside their egg cases. There are two major aims of this study. The first was to observe elasmobranch embryonic development non-invasively and produce a non-invasive developmental key for identifying the life stages for an elasmobranch inside the egg case. To this end, 7 key developmental stages were identified for the greater spotted catshark, Scyliorhinus stellaris, and are provided here with diagrams from multiple perspectives to demonstrate the key features of each stage. The physiological and ecological relevance of each stage are discussed in terms of structure and function for embryonic survival in the harsh intertidal zone. Also discussed is the importance of the egg case membrane and the protective embryonic jelly. The second aim of the study was to understand the applicability of the 7 developmental stages from S. stellaris to other oviparous elasmobranchs. Thus, changes in embryonic body size and egg yolk volume at each stage were measured and compared with those of the closely related, lesser spotted catshark, Scyliorhinus canicula. We find nearly identical growth patterns and yolk consumption patterns in both species across the 7 developmental stages. Thus, although the 7 developmental stages have been constructed in reference to the greater spotted catshark, we suggest that it can be applied to other oviparous elasmobranch species with only minor modification.
    Matched MeSH terms: Embryonic Development*
  2. Alih RA, Solomon SG, Olufeagba SO, Cheikyula JO, Abol-Munafi AB, Okomoda VT
    Zygote, 2022 Feb;30(1):125-131.
    PMID: 34176523 DOI: 10.1017/S0967199421000411
    The study sought to investigate the chronology of events and timing of embryogenesis, as well as breeding performances of three strains of Heterobranchus longifilis from Nigeria. Fish samples were collected from Benue River in Makurdi, Niger River in Onitsha, and Rima River in Sokoto for this study. Induced spawning of the strains was carried out so that egg development could be tracked from fertilization to hatching using a simple microscope. The microphotographs obtained showed that the embryogenesis of the strains followed a similar pattern to those of other members of the family Clariidae, however with changes occurring in the specific timing of the sequences of events (i.e. interstrain and interspecies differences). When the different strains were compared, the study noted similarities (P > 0.05) in the overall breeding performance (except for fertilization rate), survival at different stages of development, timing of embryogenesis, and larvae characteristics. The outcomes of this study, therefore, provide baseline information on what genetic improvement of the species through strain crossing can be attempted in future studies.
    Matched MeSH terms: Embryonic Development
  3. Chakravarthi KK, Sarvepalli A, Siddegowda SK, Nelluri V
    Ann Afr Med, 2023;22(3):359-364.
    PMID: 37417026 DOI: 10.4103/aam.aam_93_22
    BACKGROUND: Biceps brachii is an elongated two-headed fusiform muscle of the anterior compartment of the arm which crosses the shoulder as well as the elbow joint. It assists in flexion of the shoulder joint and elbow joint and powerful supinator of the forearm. It also assists in the abduction of the shoulder joint. Accessory heads of biceps brachii muscle not only give additional strength to the joints, at the same time, they may also simulate soft-tissue tumors that can result in neurovascular compression.

    AIMS AND OBJECTIVES: Accordingly, the aim of this study was designed to evaluate the prevalence of accessory heads of biceps brachii muscle in human cadavers.

    MATERIALS AND METHODS: This study was conducted on 107 formalin embalmed human cadavers (male 62 and 45 female), and dissections were performed in accordance with the institutional ethical standards and the Indian Anatomy Act.

    RESULTS: Out of 107 cadavers, three-headed biceps brachii was noted in 18 cadavers (16.82%) associated with the unusual course of musculocutaneous nerve. Rare and unusual unilateral five-headed biceps brachii was noted in one male cadaver (0.93%). All accessory heads noted in this study were supplied by the separate branches of musculocutaneous nerve except the humeral head of five-headed biceps, which was supplied by the radial nerve.

    CONCLUSION: Awareness of these anatomical variations, knowledge is necessary for radiologists, anesthetists, physiotherapists, and orthopedic surgeons to avoid complications during various radiodiagnostic procedures or surgeries of flexor deformities of the upper arm and forearm.

    Matched MeSH terms: Embryonic Development
  4. Fukui M, Fujita M, Tomizuka S, Mashimo Y, Shimizu S, Lee CY, et al.
    Arthropod Struct Dev, 2018 Jan;47(1):64-73.
    PMID: 29109050 DOI: 10.1016/j.asd.2017.11.001
    The egg structure and outline of the embryonic development of Metallyticus splendidus of one of the basal Mantodea representatives, Metallyticidae, were described in the present study. The results obtained were compared with those from the previous studies, to reconstruct and discuss the groundplan of Mantodea and Dictyoptera. In M. splendidus, the egg is spheroidal, it has a convex ventral side at the center in which numerous micropyles are grouped, and it possesses a conspicuous hatching line in its anterior half. These are the groundplan features of mantodean eggs and the "grouped micropyles in the ventral side of the egg" are regarded as an apomorphic groundplan feature of Dictyoptera. A small circular embryo is formed by a simple concentration of blastoderm cells, which then undergoes embryogenesis of the typical short germ band type. Blastokinesis is of the "non-reversion type" and the embryo keeps its original superficial position and original orientation throughout embryonic development. During the middle stages of development, the embryo undergoes rotation around the egg's anteroposterior axis. These features are a part of the groundplan of Mantodea. It is uncertain whether sharing of the "non-reversion type" of blastokinesis by Mantodea and blaberoidean Blattodea can be regarded as homology or homoplasy.
    Matched MeSH terms: Embryonic Development*
  5. Ng, Amelia Phei Fang, Teh, Chiew Peng, Poi, Khoy Yen, Tan, Aileen Shau Hwai, Zulfigar Yasin
    Trop Life Sci Res, 2016;27(11):23-29.
    MyJurnal
    The effects of salinity on the embryonic and larvae stage of Crassostrea iredalei
    were investigated. Fertilised eggs and one day old D-larvae were subjected to salinities
    ranging from 0 to 30 ppt at temperature of 30±2°C. At salinity lower than 10 ppt, 100%
    mortality was observed. For embryo development, the highest survival was observed at
    salinity 25 ppt with 80.9±2.2% survival with no significant difference compared to 15 and
    30 ppt. Shell height and length were both greatest at salinity 30 ppt. Throughout the 11
    days culture, the highest larval survival occurred at salinity 15 ppt with no significant
    difference compared to all other salinities except 10 ppt. Larval shell sizes showed no
    significant differences between salinities, except for 10 ppt. Optimum culture condition for
    larvae growth are salinities ranging from 15 to 30 ppt whereby the larval of this species
    can tolerate wider range of salinity compared to other oyster species and thus, making it a
    competitive species to be cultured.
    Matched MeSH terms: Embryonic Development
  6. Jalil M, Annuar MS, Tan BC, Khalid N
    PMID: 25767555 DOI: 10.1155/2015/757514
    Zingiber zerumbet Smith is an important herb that contains bioactive phytomedicinal compound, zerumbone. To enhance cell growth and production of this useful compound, we investigated the growth conditions of cell suspension culture. Embryogenic callus generated from shoot bud was used to initiate cell suspension culture. The highest specific growth rate of cells was recorded when it was cultured in liquid Murashige and Skoog basal medium containing 3% sucrose with pH 5.7 and incubated under continuous shaking condition of 70 rpm for 16 h light and 8 h dark cycle at 24°C. Our results also revealed that the type of carbohydrate substrate, light regime, agitation speed, and incubation temperature could affect the production of zerumbone. Although the zerumbone produced in this study was not abundant compared to rhizome of Z. zerumbet, the possibility of producing zerumbone during early stage could serve as a model for subsequent improvement.
    Matched MeSH terms: Embryonic Development
  7. Shetty SS, Sharma M, Fonseca FP, Jayaram P, Tanwar AS, Kabekkodu SP, et al.
    Jpn Dent Sci Rev, 2020 Nov;56(1):97-108.
    PMID: 32874377 DOI: 10.1016/j.jdsr.2020.07.002
    Epithelial-mesenchymal transition (EMT) is a critical process that occurs during the embryonic development, wound healing, organ fibrosis and the onset of malignancy. Emerging evidence suggests that the EMT is involved in the invasion and metastasis of cancers. The inflammatory reaction antecedent to fibrosis in the onset of oral submucous fibrosis (OSF) and the role of EMT in its malignant transformation indicates a hitherto unexplored involvement of EMT. This review focuses on the role of EMT markers which are regulators of the EMT mediated complex network of molecular mechanisms involved in the pathogenesis of OSF and OSCC. Further the gene enrichment analysis and pathway analysis supports the association of the upregulated and downregulated genes in various EMT regulating pathways.
    Matched MeSH terms: Embryonic Development
  8. Asmah Awal, Nazatul Asikin Muda
    MyJurnal
    In this paper, a micropropagation protocol of sugar palm (Arenga pinnata Wurmb Merr) through callogenesis and somatic embryogenesis was examined. Callus induction frequency and somatic embryogenesis response were dependent on plant growth regulators (PGRs) and genotype. Semi-compact and compact embryogenic calluses were induced from excised immature zygotic embryo (IZE) cultured on semi-solid MS (Murashige & Skoog, 1962) medium supplemented with various concentration and combination of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzyl aminopurine acid (BAP). MS medium supplemented with 0.4 mg/L 2,4-D and 0.5 mg/L BAP was found optimum to induce 100% rate of embryogenic calluses and maximum degree of callus formation after 8 and 12 weeks of culture. The incorporation of increased sucrose concentration (60.0 g/L) and 2.0 g/L casein hydrolysate (CH) to the culture medium with similar PGRs composition enhanced the induction of globular somatic embryos (SEs), while addition of silver nitrate (AgNO3) produced SEs of different stages. SEs maturated in MS medium containing 1.0 mg/L BAP and 1.0 mg/L naphthalene-acetic acid (NAA) formed cotyledon-stage embryos. Clonal roots regeneration was obtained on half-strength MS devoid of PGRs after 4 months of culture. Frequent subcultures increased embryogenesis rate favourably.
    Matched MeSH terms: Embryonic Development
  9. Karim R, Tan YS, Singh P, Khalid N, Harikrishna JA
    Physiol Mol Biol Plants, 2018 Sep;24(5):741-751.
    PMID: 30150851 DOI: 10.1007/s12298-018-0566-8
    The process of somatic embryogenesis and plant regeneration involve changes in gene expression and have been associated with changes in DNA methylation. Here, we report the expression and DNA methylation patterns of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK), BABY BOOM (BBM), LEAFY COTYLEDON 2 (LEC2) and WUSCHEL (WUS) in meristematic block of newly emerged shoots from rhizome, embryogenic and non-embryogenic calli, prolonged cell suspension culture, ex vitro leaf, and in vitro leaf of regenerated plants of Boesenbergia rotunda. Among all seven samples, based on qRT-PCR, the highest level of expression of SERK, BBM and LEC2 was in embryogenic callus, while WUS was most highly expressed in meristematic block tissue followed by embryogenic callus. Relatively lower expression was observed in cell suspension culture and watery callus for SERK, LEC2 and WUS and in in vitro leaf for BBM. For gene specific methylation determined by bisulfite sequencing data, embryogenic callus samples had the lowest levels of DNA methylation at CG, CHG and CHH contexts of SERK, LEC2 and WUS. We observed negative correlation between DNA methylation at the CG and CHG contexts and the expression levels of SERK, BBM, LEC2 and WUS. Based on our results, we suggest that relatively higher expression and lower level of DNA methylation of SERK, BBM, LEC2 and WUS are associated with somatic embryogenesis and plant regeneration in B. rotunda.
    Matched MeSH terms: Embryonic Development
  10. Zainal Abidin S, Abbaspourbabaei M, Ntimi CM, Siew WH, Pike-See C, Rosli R, et al.
    Malays J Med Sci, 2014 Dec;21(Spec Issue):27-33.
    PMID: 25941460 MyJurnal
    MicroRNAs (miRNAs) have a crucial role in gene expression regulation and protein synthesis, especially in the central nervous system. In developing mouse embryos a novel miRNA, miR-3099, is highly expressed, particularly in the central nervous system. This study aims to determine the expression of miR-3099 during cellular differentiation of 46C mouse embryonic stem cells after neural induction with N2/B27 medium.
    Matched MeSH terms: Embryonic Development
  11. Zakaria R, Rajikin MH, Yaacob NS, Nor NM
    Reprod Biol, 2007 Mar;7(1):41-53.
    PMID: 17435832
    The possible role of insulin-like growth factors (IGFs) and their receptors (IGFRs) in the pathogenesis of diabetic embryopathy was investigated. Sexually mature female ICR mice of 6-8 weeks old were made diabetic by a single intraperitoneal injection with 200 mg/kg streptozotocin ten days prior to mating. Fallopian tubes and uterine tissues were obtained from the superovulated diabetic and normal mice 48, 72 and 96 hours following human chorionic gonadotropin (hCG) injection. The mRNA expression of IGF-1 and IGF-2 as well as their receptors was determined in the tissues using Real-time Polymerase Chain Reaction (Real-time PCR). The mRNA expression of IGF-1 in the fallopian tube and uterus of the diabetic mice was significantly lower 72 and 96 hours after hCG treatment, respectively, as compared to the controls. The mRNA expression of IGF-1R at 96 hours post-hCG treatment was significantly higher in the fallopian tube and lower in the uterus of the diabetic mice as compared to the controls. The mRNA expression IGF-2 in the fallopian tube was significantly higher 48 and 96 hours after hCG treatment, but was lower in the uterus of diabetic mice 96 hours after hCG treatment as compared to controls. The mRNA expression of IGF-2R in the diabetic mice was significantly higher 48 and 96 hours (the fallopian tube) and 48 hours (uterus) after hCG treatments as compared to the controls. In conclusion, an alteration in mRNA expression of IGFs and their receptors in the diabetic mice as observed in this study could possibly result in diabetic embryopathy.
    Matched MeSH terms: Embryonic Development/physiology*
  12. Lee ECS, Elhassan SAM, Lim GPL, Kok WH, Tan SW, Leong EN, et al.
    Biomed Pharmacother, 2019 Mar;111:198-208.
    PMID: 30583227 DOI: 10.1016/j.biopha.2018.12.052
    For many years, circular ribonucleic acids (circRNAs) have been counted as aberrant splicing by-products. Advanced bioinformatics analysis and deep sequencing techniques have allowed researchers to discover more interesting facts about circRNAs. Intriguing evidence has shed light on the functions of circRNAs in many tissues. Furthermore, emerging reports showed that circRNAs are found abundantly in saliva and blood samples, suggesting that circRNAs are potential clinical biomarkers for human embryonic development, diseases progression and prognosis, in addition to its role in organogenesis and pathogenesis. The implementation of circRNAs in human developmental stages and diseases would be a tremendous discovery in the science and medical field. Therefore, circRNAs have been studied for its biological function as well as its implication in various human diseases. The aim of this review is to highlight the importance of circRNAs in cardiac, respiratory, nervous, endocrine and digestive systems. In addition, the role and impact of circRNAs in, cardiogenesis, neurogenesis and cancer have been discussed.
    Matched MeSH terms: Embryonic Development/physiology*
  13. Martin TE, Ton R, Niklison A
    Ecol Lett, 2013 Jun;16(6):738-45.
    PMID: 23473270 DOI: 10.1111/ele.12103
    Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species.
    Matched MeSH terms: Embryonic Development*
  14. Li H, Yang C, Yusoff NM, Yahaya BH, Lin J
    Neuroscience, 2017 09 01;358:269-276.
    PMID: 28687312 DOI: 10.1016/j.neuroscience.2017.06.053
    Few researchers have investigated the direction of commissural axon projections on the contralateral side of the vertebrate embryonic spinal cord, especially for comparison between its different regions. In this study, pCAGGS-GFP plasmid expression was limited to different regions of the chicken embryonic spinal cord (cervical, anterior limb, anterior thorax, posterior thorax and posterior limb) at E3 using in ovo electroporation with modified electrodes and optimal electroporation conditions. Then open-book technique was performed at E6 to analyze the direction of axon projections in different spinal cord regions. The results show that in the five investigated regions, most axons projected rostrally after crossing the floor plate while a minority projected caudally. And there was a significant difference between the rostral and caudal projection quantities (P<0.01). The ratio of rostral and caudal projections was significantly different between the five investigated regions (P<0.05), except between the cervical region and the anterior limb (P>0.05). The projections were most likely to be rostral for the posterior limb followed by the posterior thorax, cervical region, anterior limb and anterior thorax. Our data for the direction of the commissural axon projections will be helpful in the future analyses of axon projection mechanisms and spinal cord-brain circuit formation.
    Matched MeSH terms: Embryonic Development/physiology*
  15. Wafriy CI, Kamsani YS, Nor-Ashikin MNK, Nasir NAA, Hanafiah M
    J Reprod Immunol, 2021 02;143:103240.
    PMID: 33166807 DOI: 10.1016/j.jri.2020.103240
    Insufficient experimental studies have reported the effect of ovalbumin (OVA) as an allergen towards embryonic growth in asthma mouse model. The impact of 10 μg/200 μL OVA on maternal inflammatory and oxidative stress (OS) responses, and preimplantation embryonic development was investigated in this study. We first established OVA-induced asthma mouse model, and following superovulation, mated the females and challenged them with Methacholine (Mch) test. Upon embryo retrieval, only those with the highest implantation potential were cultured in vitro. Significant reduction in the number of embryos at each preimplantation stage was noted in the treated group. Uneven sized blastomeres at 2-, 4- and 8-cell stages were also evident in this group. Embryo fragmentation was significant at only 2-, 4- and 8-cell stages. We also found that OVA tended to raise maternal inflammatory and OS biomarker levels as well as to cause inappropriate levels of pregnancy hormones progesterone (P4) and estrogen (E2) although insignificant. The combined results indicate that 10 μg/200 μL OVA had altered both quality and quantity of the embryos in asthma mouse model although its effect on pregnancy hormones, inflammatory and OS responses were non-pathological.
    Matched MeSH terms: Embryonic Development/immunology*
  16. Hamirah NK, Kamsani YS, Mohamed Nor Khan NA, Ab Rahim S, Rajikin MH
    Med Sci Monit Basic Res, 2017 Dec 08;23:373-379.
    PMID: 29217815
    BACKGROUND Cytoskeletal structures, in particular actin and tubulin, provide a fundamental framework in all cells, including embryos. The objective of this study was to evaluate the effects of nicotine, which is a source of oxidative stress, and subsequent supplementation with Tocotrienol-rich fraction (TRF) on actin and tubulin of 2- and 8-cell murine embryos. MATERIAL AND METHODS Thirty female Balb/C mice were divided into 4 groups: Group 1 received: subcutaneous (sc) injection of 0.9% NaCl; Group 2 received sc injection of 3.0 nicotine mg/kg bw/day; Group 3 received 3.0 sc injection of nicotine mg/kg bw/day +60 mg/kg bw/day TRF; and Group 4 received 60 sc injection of TRF mg/kg bw/day for 7 consecutive days. The animals were superovulated with 5 IU PMSG followed by 5 IU hCG 48 h later. Animals were cohabited with fertile males overnight and euthanized through cervical dislocation at 24 h post coitum. Embryos at the 2- and 8-cell stages were harvested, fixed, and stained to visualize actin and tubulin distributions by using CLSM. RESULTS Results showed that at 2-cell stage, actin intensities were significantly reduced in the nicotine group compared to that of the control group (p<0.001). In Group 3, the intensity of actin significantly increased compared to that of the nicotine group (p<0.001). At 8-cell stage, actin intensity of the nicotine group was significantly lower than that of the control group (p<0.001). The intensities of actin in Group 3 were increased compared to that of nicotine treatment alone (p<0.001). The same trend was seen in tubulin at 2- and 8-cell stages. Interestingly, both actin and tubulin structures in the TRF-treated groups were enhanced compared to the control. CONCLUSIONS This study suggests that TRF prevents the deleterious effects of nicotine on the cytoskeletal structures of 2- and 8-cell stages of pre-implantation mice embryos in vitro.
    Matched MeSH terms: Embryonic Development/drug effects*
  17. Golbabapour S, Majid NA, Hassandarvish P, Hajrezaie M, Abdulla MA, Hadi AH
    OMICS, 2013 Jun;17(6):283-96.
    PMID: 23692361 DOI: 10.1089/omi.2012.0105
    DNA methylation, histone modifications, and chromatin configuration are crucially important in the regulation of gene expression. Among these epigenetic mechanisms, silencing the expression of certain genes depending on developmental stage and tissue specificity is a key repressive system in genome programming. Polycomb (Pc) proteins play roles in gene silencing through different mechanisms. These proteins act in complexes and govern the histone methylation profiles of a large number of genes that regulate various cellular pathways. This review focuses on two main Pc complexes, Pc repressive complexes 1 and 2, and their phylogenetic relationship, structures, and function. The dynamic roles of these complexes in silencing will be discussed herein, with a focus on the recruitment of Pc complexes to target genes and the key factors involved in their recruitment.
    Matched MeSH terms: Embryonic Development/physiology
  18. Dasiman R, Rahman NS, Othman S, Mustafa MF, Yusoff NJ, Jusoff WH, et al.
    Med Sci Monit Basic Res, 2013 Oct 04;19:258-66.
    PMID: 24092420 DOI: 10.12659/MSMBR.884019
    BACKGROUND: This study aimed to investigate the effects of vitrification and slow freezing on actin, tubulin, and nuclei of in vivo preimplantation murine embryos at various developmental stages using a Confocal Laser Scanning Microscope (CLSM).

    MATERIAL/METHODS: Fifty female mice, aged 4-6 weeks, were used in this study. Animals were superovulated, cohabitated overnight, and sacrificed. Fallopian tubes were excised and flushed. Embryos at the 2-cell stage were collected and cultured to obtain 4- and 8-cell stages before being cryopreserved using vitrification and slow freezing. Fixed embryos were stained with fluorescence-labelled antibodies against actin and tubulin, as well as DAPI for staining the nucleus. Labelled embryos were scanned using CLSM and images were analyzed with Q-Win software V3.

    RESULTS: The fluorescence intensity of both vitrified and slow-frozen embryos was significantly lower for tubulin, actin, and nucleus as compared to non-cryopreserved embryos (p<0.001). Intensities of tubulin, actin, and nucleus in each stage were also decreased in vitrified and slow-frozen groups as compared to non-cryopreserved embryos.

    CONCLUSIONS: Cryopreservation of mouse embryos by slow freezing had a more detrimental effect on the actin, tubulin, and nucleus structure of the embryos compared to vitrification. Vitrification is therefore superior to slow freezing in terms of embryonic cryotolerance.

    Matched MeSH terms: Embryonic Development*
  19. Zhou L, Wang P, Zhang J, Heng BC, Tong GQ
    Zygote, 2016 Feb;24(1):89-97.
    PMID: 25672483 DOI: 10.1017/S0967199414000768
    ING2 (inhibitor of growth protein-2) is a member of the ING-gene family and participates in diverse cellular processes involving tumor suppression, DNA repair, cell cycle regulation, and cellular senescence. As a subunit of the Sin3 histone deacetylase complex co-repressor complex, ING2 binds to H3K4me3 to regulate chromatin modification and gene expression. Additionally, ING2 recruits histone methyltransferase (HMT) activity for gene repression, which is independent of the HDAC class I or II pathway. However, the physiological function of ING2 in mouse preimplantation embryo development has not yet been characterized previously. The expression, localization and function of ING2 during preimplantation development were investigated in this study. We showed increasing expression of ING2 within the nucleus from the 4-cell embryo stage onwards; and that down-regulation of ING2 expression by endoribonuclease-prepared small interfering RNA (esiRNA) microinjection results in developmental arrest during the morula to blastocyst transition. Embryonic cells microinjected with ING2-specific esiRNA exhibited decreased blastulation rate compared to the negative control. Further investigation of the underlying mechanism indicated that down-regulation of ING2 significantly increased expression of p21, whilst decreasing expression of HDAC1. These results suggest that ING2 may play a crucial role in the process of preimplantation embryo development through chromatin regulation.
    Matched MeSH terms: Embryonic Development/genetics; Embryonic Development/physiology*
  20. Ibrahim AM, Kayat FB, Hussin ZE, Susanto D, Ariffulah M
    ScientificWorldJournal, 2014;2014:284342.
    PMID: 24757416 DOI: 10.1155/2014/284342
    Kenaf (Hibiscus cannabinus L.) is one of the important species of Hibiscus cultivated for fiber. Availability of homozygous parent lines is prerequisite to the use of the heterosis effect reproducible in hybrid breeding. The production of haploid plants by anther culture followed by chromosome doubling can be achieved in short period compared with inbred lines by conventional method that requires self pollination of parent material. In this research, the effects of the microspore developmental stage, time of flower collection, various pretreatments, different combinations of hormones, and culture condition on anther culture of KB6 variety of Kenaf were studied. Young flower buds with immature anthers at the appropriate stage of microspore development were sterilized and the anthers were carefully dissected from the flower buds and subjected to various pretreatments and different combinations of hormones like NAA, 2,4-D, Kinetin, BAP, and TDZ to induce callus. The best microspore development stage of the flower buds was about 6-8 mm long collected 1-2 weeks after flower initiation. At that stage, the microspores were at the uninucleate stage which was suitable for culture. The best callus induction frequency was 90% in the optimized semisolid MS medium fortified with 3.0 mg/L BAP + 3.0 mg/L NAA.
    Matched MeSH terms: Embryonic Development/drug effects; Embryonic Development/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links