Displaying all 6 publications

  1. Saleem H, Zengin G, Locatelli M, Ahmad I, Khaliq S, Mahomoodally MF, et al.
    Food Chem. Toxicol., 2019 Sep;131:110535.
    PMID: 31154083 DOI: 10.1016/j.fct.2019.05.043
    This study endeavours to investigate the phytochemical composition, biological properties and in vivo toxicity of methanol and dichloromethane extracts of Zaleya pentandra (L.) Jeffrey. Total bioactive contents, antioxidant (phosphomolybdenum and metal chelating, DPPH, ABTS, FRAP and CUPRAC) and enzyme inhibition (cholinesterases, tyrosinase α-amylase, and α-glucosidase) potential were assessed utilizing in vitro bioassays. UHPLC-MS phytochemical profiling was carried out to identify the essential compounds. The methanol extract was found to contain highest phenolic (22.60 mg GAE/g) and flavonoid (31.49 mg QE/g) contents which correlate with its most significant radical scavenging, reducing potential and tyrosinase inhibition. The dichloromethane extract was most potent for phosphomolybdenum, ferrous chelation, α-amylase, α-glucosidase, and cholinesterase inhibition assays. UHPLC-MS analysis of methanol extract unveiled to identify 11 secondary metabolites belonging to five sub-groups, i.e., phenolic, alkaloid, carbohydrate, terpenoid, and fatty acid derivatives. Additionally, in vivo toxicity was conducted for 21 days and the methanol extract at different doses (150, 200, 250 and 300 mg/kg) was administered in experimental chicks divided into five groups each containing five individuals. Different physical, haematological and biochemical parameters along with the absolute and relative weight of visceral body organs were studied. Overall, no toxic effect was noted for the extract at tested doses.
    Matched MeSH terms: Enzyme Inhibitors/toxicity
  2. Somchit N, Wong CW, Zuraini A, Ahmad Bustamam A, Hasiah AH, Khairi HM, et al.
    Drug Chem Toxicol, 2006;29(3):237-53.
    PMID: 16777703
    Itraconazole and fluconazole are potent wide spectrum antifungal drugs. Both of these drugs induce hepatotoxicity clinically. The mechanism underlying the hepatotoxicity is unknown. The purpose of this study was to investigate the role of phenobarbital (PB), an inducer of cytochrome P450 (CYP), and SKF 525A, an inhibitor of CYP, in the mechanism of hepatotoxicity induced by these two drugs in vivo. Rats were pretreated with PB (75 mg/kg for 4 days) prior to itraconazole or fluconazole dosing (20 and 200 mg/kg for 4 days). In the inhibition study, for 4 consecutive days, rats were pretreated with SKF 525A (50 mg/kg) or saline followed by itraconazole or fluconazole (20 and 200 mg/kg) Dose-dependent increases in plasma alanine aminotransferase (ALT), gamma-glutamyl transferase (gamma-GT), and alkaline phosphatase (ALP) activities and in liver weight were detected in rats receiving itraconazole treatment. Interestingly, pretreatment with PB prior to itraconazole reduced the ALT and gamma-GT activities and the liver weight of rats. No changes were observed in rats treated with fluconazole. Pretreatment with SKF 525A induced more severe hepatotoxicity for both itraconazole and fluconazole. CYP 3A activity was inhibited dose-dependently by itraconazole treatment. Itraconazole had no effects on the activity of CYP 1A and 2E. Fluconazole potently inhibited all three isoenzymes of CYP. PB plays a role in hepatoprotection to itraconazole-induced but not fluconazole-induced hepatotoxicity. SKF 525A enhanced the hepatotoxicity of both antifungal drugs in vivo. Therefore, it can be concluded that inhibition of CYP may play a key role in the mechanism of hepatotoxicity induced by itraconazole and fluconazole.
    Matched MeSH terms: Enzyme Inhibitors/toxicity*
  3. Abbasi MA, Nazir M, Ur-Rehman A, Siddiqui SZ, Hassan M, Raza H, et al.
    Arch. Pharm. (Weinheim), 2019 Mar;352(3):e1800278.
    PMID: 30624805 DOI: 10.1002/ardp.201800278
    Novel bi-heterocyclic benzamides were synthesized by sequentially converting 4-(1H-indol-3-yl)butanoic acid (1) into ethyl 4-(1H-indol-3-yl)butanoate (2), 4-(1H-indol-3-yl)butanohydrazide (3), and a nucleophilic 5-[3-(1H-indol-3-yl)propyl]-1,3,4-oxadiazole-2-thiol (4). In a parallel series of reactions, various electrophiles were synthesized by reacting substituted anilines (5a-k) with 4-(chloromethyl)benzoylchloride (6) to afford 4-(chloromethyl)-N-(substituted-phenyl)benzamides (7a-k). Finally, the nucleophilic substitution reaction of 4 was carried out with newly synthesized electrophiles, 7a-k, to acquire the targeted bi-heterocyclic benzamides, 8a-k. The structural confirmation of all the synthesized compounds was done by IR, 1 H NMR, 13 C NMR, EI-MS, and CHN analysis data. The inhibitory effects of these bi-heterocyclic benzamides (8a-k) were evaluated against alkaline phosphatase, and all these molecules were identified as potent inhibitors relative to the standard used. The kinetics mechanism was ascribed by evaluating the Lineweaver-Burk plots, which revealed that compound 8b inhibited alkaline phosphatase non-competitively to form an enzyme-inhibitor complex. The inhibition constant Ki calculated from Dixon plots for this compound was 1.15 μM. The computational study was in full agreement with the experimental records and these ligands exhibited good binding energy values. These molecules also exhibited mild cytotoxicity toward red blood cell membranes when analyzed through hemolysis. So, these molecules might be deliberated as nontoxic medicinal scaffolds to render normal calcification of bones and teeth.
    Matched MeSH terms: Enzyme Inhibitors/toxicity
  4. Rao PJ, Kolla SD, Elshaari F, Elshaari F, Awamy HE, Elfrady M, et al.
    Infect Disord Drug Targets, 2015;15(2):131-4.
    PMID: 26205799
    BACKGROUND: Piperine is isolated from Piper nigrum popularly known as black pepper. Previous studies have demonstrated the beneficial effects of piperine in various health conditions. Additionally, it is a powerful bioenhancer for many drugs. Piperine extract is believed to potentiate the effect of drugs by several folds. The present study is focused on its individual effect on liver function.

    MATERIALS AND METHODS: A total of 30 CF-1 albino mice obtained from the animal house of faculty of Medicine, Benghazi University, Benghazi, Libya were included in the study. These mice were fed with high cholesterol diet and divided into 2 groups. Twenty mice were administered piperine at a dose of 5mg/kg body weight. Piperine was isolated in Department of Pharmacognosy, Faculty of Pharmacy, Benghazi University, Benghazi and 10 mice were not administered piperine but fed with high fat diet. These mice were anesthetized with ketamine and halothane and blood was drawn from each mouse before the study and after three weeks by cardiocentesis. Serum transaminases (alanine aminotransferase [ALT] and aspartate aminotransferase [AST]), alkaline phosphatase and total protein were measured by authenticated methods.

    RESULTS: Serum alanine amino transferase was significantly elevated (p=0.0002) in group A mice after the administration of Piperine extract for three weeks compared to those of group B mice. Serum aspartate amino transferase was elevated significantly (p=0.046) and alkaline phosphatase (p= 0.0001) also was significantly increased after the administration of piperine. Serum total protein (p= 0.011) values were significantly decreased after the use of piperine for three weeks in group A mice.

    CONCLUSION: This study showed that there might have been a considerable damage to liver with piperine extract. Further research may be required to prove this damage to liver function.

    Matched MeSH terms: Cytochrome P-450 Enzyme Inhibitors/toxicity
  5. Ahmad M, Suhaimi SN, Chu TL, Abdul Aziz N, Mohd Kornain NK, Samiulla DS, et al.
    PLoS One, 2018;13(1):e0191295.
    PMID: 29329342 DOI: 10.1371/journal.pone.0191295
    Copper(II) ternary complex, [Cu(phen)(C-dmg)(H2O)]NO3 was evaluated against a panel of cell lines, tested for in vivo efficacy in nasopharyngeal carcinoma xenograft models as well as for toxicity in NOD scid gamma mice. The Cu(II) complex displayed broad spectrum cytotoxicity against multiple cancer types, including lung, colon, central nervous system, melanoma, ovarian, and prostate cancer cell lines in the NCI-60 panel. The Cu(II) complex did not cause significant induction of cytochrome P450 (CYP) 3A and 1A enzymes but moderately inhibited CYP isoforms 1A2, 2C9, 2C19, 2D6, 2B6, 2C8 and 3A4. The complex significantly inhibited tumor growth in nasopharyngeal carcinoma xenograft bearing mice models at doses which were well tolerated without causing significant or permanent toxic side effects. However, higher doses which resulted in better inhibition of tumor growth also resulted in toxicity.
    Matched MeSH terms: Cytochrome P-450 Enzyme Inhibitors/toxicity
  6. Kamisah Y, Zuhair JSF, Juliana AH, Jaarin K
    Biomed Pharmacother, 2017 Dec;96:291-298.
    PMID: 28992471 DOI: 10.1016/j.biopha.2017.09.095
    Parkia speciosa Hassk is a plant found abundantly in Southeast Asia region. Its seeds with or without pods and roots have been used in traditional medicine in this region to treat hypertension. Therefore, we aimed to investigate the potential effect of the plant empty pod extract on hypertension development and changes in heart induced by N(G)-nitro-l-arginine methyl ester (l-NAME) administration in rats. Twenty-four male Sprague Dawley rats were divided into four groups. Groups 1 to 3 were given l-NAME (25mg/kg, intraperitoneally) for 8 weeks. Groups 2 and 3 were also given Parkia speciosa empty pods methanolic extract (800mg/kg, orally) and nicardipine (3mg/kg, orally), concurrently with l-NAME. The last group served as the control. l-NAME reduced plasma nitric oxide level and therefore, increased systolic blood pressure, angiotensin-converting enzyme and NADPH oxidase activities as well as lipid peroxidation in the heart. Parkia speciosa extract and nicardipine treatments had significantly prevented the elevations of blood pressure, angiotensin-converting enzyme, NADPH oxidase activities and lipid peroxidation in the heart induced by the l-NAME. Parkia speciosa extract but not nicardipine prevented the reduction in plasma nitric oxide level caused by l-NAME. In conclusion, Parkia speciosa empty pods methanolic extract has a potential to prevent the development of hypertension possibly by preventing the loss of plasma nitric oxide, as well as has cardioprotective effects by reducing angiotensin-converting enzyme activity and oxidative stress in the heart in rats administered l-NAME.
    Matched MeSH terms: Enzyme Inhibitors/toxicity
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links