Displaying all 6 publications

Abstract:
Sort:
  1. Akbar A, Sharma JN
    Pharmacol Res, 1992 Apr;25(3):279-86.
    PMID: 1518772
    We have investigated the effect of indomethacin on histamine- and acetylcholine (ACh)-induced responses in the intact and denuded epithelium of guinea pig isolated tracheal smooth muscle. Epithelium removal resulted in increased responsiveness to ACh and histamine. Indomethacin (2.8 microM) enhanced the sensitivity of both intact and denuded preparations to histamine and ACh. These findings suggest that the tracheal epithelium of guinea pig plays a protective role against bronchoconstrictors, such as ACh and histamine. Furthermore, indomethacin-mediated hyperresponsiveness caused by these agonists in epithelium denuded preparations might be a reflection of removal of prostaglandin (PG) biosynthesis. A similar process of interaction in indomethacin-treated asthmatic patients (with damaged airway epithelium) might take place. The significance of these findings is discussed.
    Matched MeSH terms: Epithelium/drug effects
  2. Akbar A, Sharma JN, Yusof AP, Gan EK
    Int J Tissue React, 1998;20(3):95-100.
    PMID: 9894182
    We studied the effect of indomethacin, a cyclooxygenase inhibitor, on bradykinin-induced responses in the intact and denuded epithelium of the isolated tracheal smooth muscle in guinea pigs. Epithelium removal alone did not alter the responsiveness to bradykinin. Indomethacin (2.8 microM) enhanced the sensitivity to bradykinin of both intact and denuded preparations. This finding suggests that the tracheal epithelial may have no protective effect on the contractile responses induced by bradykinin. This may be due to the presence of high amounts of bradykinin-inactivating enzymes in the tracheal smooth muscle. Indomethacin-medicated potentiation caused by bradykinin in epithelium intact and denuded preparations may be an indication of removal of the bronchodilator prostaglandin biosynthesis. The significance of these findings is discussed.
    Matched MeSH terms: Epithelium/drug effects
  3. Zailan N, Abdul Rashid AH, Das S, Abdul Mokti NA, Hassan Basri J, Teoh SL, et al.
    Clin Ter, 2010;161(6):515-21.
    PMID: 21181079
    Chlorella vulgaris (CV) is a green microalgae enriched with nutrients, vitamins, minerals and chlorophyll. The aim of our study was to evaluate the potential wound healing effects of CV as a dressing while comparing it to sodium alginate dressing.
    Matched MeSH terms: Epithelium/drug effects
  4. Izuddin WI, Loh TC, Foo HL, Samsudin AA, Humam AM
    Sci Rep, 2019 Jul 09;9(1):9938.
    PMID: 31289291 DOI: 10.1038/s41598-019-46076-0
    We investigate the effects of postbiotic Lactobacillus plantarum RG14 on gastrointestinal histology, haematology, mucosal IgA concentration, microbial population and mRNA expression related to intestinal mucosal immunity and barrier function. Twelve newly weaned lambs were randomly allocated to two treatment groups; the control group without postbiotic supplementation and postbiotic group with supplementation of 0.9% postbiotic in the diet over a 60-day trial. The improvement of rumen papillae height and width were observed in lambs fed with postbiotics. In contrast, no difference was shown in villi height of duodenum, jejunum and ileum between the two groups. Lambs received postbiotics had a lower concentration of IgA in jejunum but no difference in IgA concentration in serum and mucosal of the rumen, duodenum and ileum. In respect of haematology, postbiotics lowered leukocyte, lymphocyte, basophil, neutrophil and platelets, no significant differences in eosinophil. The increase in of IL-6 mRNA and decrease of IL-1β, IL-10, TNF mRNA were observed in the jejunum of lambs receiving postbiotics. Postbiotics also improved the integrity of the intestinal barrier by the upregulation of TJP-1, CLDN-1 and CLDN-4 mRNA. Postbiotic supplementation derived from L. plantarum RG14 in post-weaning lambs enhance the ruminal papillae growth, immune status and gastrointestinal health.
    Matched MeSH terms: Epithelium/drug effects*
  5. Zaid SS, Sulaiman SA, Sirajudeen KN, Othman NH
    PMID: 21194469 DOI: 10.1186/1472-6882-10-82
    Honey is a highly nutritional natural product that has been widely used in folk medicine for a number of therapeutic purposes. We evaluated whether Malaysian Tualang honey (AgroMas, Malaysia) was effective in reducing menopausal syndrome in ovariectomised female rats; an animal model for menopause.
    Matched MeSH terms: Epithelium/drug effects
  6. Alsaeedi HA, Koh AE, Lam C, Rashid MBA, Harun MHN, Saleh MFBM, et al.
    J. Photochem. Photobiol. B, Biol., 2019 Sep;198:111561.
    PMID: 31352000 DOI: 10.1016/j.jphotobiol.2019.111561
    Blindness and vision loss contribute to irreversible retinal degeneration, and cellular therapy for retinal cell replacement has the potential to treat individuals who have lost light sensitive photoreceptors in the retina. Retinal cells are well characterized in function, and are a subject of interest in cellular replacement therapy of photoreceptors and the retinal pigment epithelium. However, retinal cell transplantation is limited by various factors, including the choice of potential stem cell source that can show variability in plasticity as well as host tissue integration. Dental pulp is one such source that contains an abundance of stem cells. In this study we used dental pulp-derived mesenchymal stem cells (DPSCs) to mitigate sodium iodate (NaIO3) insult in a rat model of retinal degeneration. Sprague-Dawley rats were first given an intravitreal injection of 3 × 105 DPSCs as well as a single systemic administration of NaIO3 (40 mg/kg). Electroretinography (ERG) was performed for the next two months and was followed-up by histological analysis. The ERG recordings showed protection of DPSC-treated retinas within 4 weeks, which was statistically significant (* P ≤ .05) compared to the control. Retinal thickness of the control was also found to be thinner (*** P ≤ .001). The DPSCs were found integrated in the photoreceptor layer through immunohistochemical staining. Our findings showed that DPSCs have the potential to moderate retinal degeneration. In conclusion, DPSCs are a potential source of stem cells in the field of eye stem cell therapy due to its protective effects against retinal degeneration.
    Matched MeSH terms: Retinal Pigment Epithelium/drug effects*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links