Displaying all 4 publications

Abstract:
Sort:
  1. Watarai Y, Danguilan R, Casasola C, Chang SS, Ruangkanchanasetr P, Kee T, et al.
    Clin Transplant, 2021 10;35(10):e14415.
    PMID: 34216395 DOI: 10.1111/ctr.14415
    OBJECTIVE: We analyzed the efficacy and safety of an everolimus with reduced-exposure calcineurin inhibitor (EVR+rCNI) versus mycophenolic acid with standard-exposure CNI (MPA+sCNI) regimen in Asian patients from the TRANSFORM study.

    METHODS: In this 24-month, open-label study, de novo kidney transplant recipients (KTxRs) were randomized (1:1) to receive EVR+rCNI or MPA+sCNI, along with induction therapy and corticosteroids.

    RESULTS: Of the 2037 patients randomized in the TRANSFORM study, 293 were Asian (EVR+rCNI, N = 136; MPA+sCNI, N = 157). At month 24, EVR+rCNI was noninferior to MPA+sCNI for the binary endpoint of estimated glomerular filtration rate (eGFR) 

    Matched MeSH terms: Everolimus/therapeutic use
  2. Wan Ahmad WA, Nakayoshi T, Mahmood Zuhdi AS, Ismail MD, Zainal Abidin I, Ino Y, et al.
    Heart Vessels, 2020 Apr;35(4):463-473.
    PMID: 31587103 DOI: 10.1007/s00380-019-01516-9
    Recent clinical trials have raised concerns about the safety and efficacy of ABSORB™ bioresorbable vascular scaffolds (BVS). The difference in the vascular healing process between SYNERGY™ bioabsorbable polymer-coated everolimus-eluting stents (BP-EES) and BVS remains unclear. The aim of the ENHANCE study was to compare vascular healing on BP-EES versus BVS by optical coherence tomography (OCT) and coronary angioscopy (CAS) at 4- and 12-month follow-ups. This is a prospective, non-randomized, single center clinical trial. Thirteen eligible patients with multivessel disease were enrolled. BP-EES and BVS were simultaneously implanted in the same patients, but in different coronary vessels. Imaging follow-up with both OCT and CAS was completed in 11 patients at 12 months. Neointimal coverage rates were similar between the two groups based on OCT measurements. The neointimal thickness of BP-EES was significantly thicker at the 12th month than at the 4th month, whereas the neointimal thickness of BVS did not change between the measurements taken at the 4th and 12th month. Existence of intra-stent thrombus was significantly higher in the BVS group, compared to the BP-EES group. On the other hand, CAS revealed that red-thrombi and yellow-plaque were more frequently observed in BVS at 4 months and up to 12-month follow-ups than in BP-EES. These findings suggested that the evidence of instability remained up to 12 months in the vascular healing with BVS, compared to that with BP-EES. Vascular healing of the stented wall was recognized at the very early phase after BP-EES implantation. However, vascular healing with BVS was still incomplete after 12 months.
    Matched MeSH terms: Everolimus/therapeutic use*
  3. Lertjanyakun V, Chaiyakunapruk N, Kunisawa S, Imanaka Y
    Pharmacoeconomics, 2018 09;36(9):1113-1124.
    PMID: 29707743 DOI: 10.1007/s40273-018-0660-3
    BACKGROUND: Exemestane (EXE), exemestane + everolimus (EXE + EVE), toremifene (TOR), and fulvestrant (FUL) are second-line endocrine therapies for postmenopausal hormone receptor-positive (HR +)/human epidermal growth factor receptor 2-negative (HER2 -) metastatic breast cancer (mBC) in Japan. Although the efficacy of these therapies has been shown in recent studies, cost-effectiveness has not yet been determined in Japan.

    OBJECTIVE: This study aimed to examine the cost-effectiveness of second-line endocrine therapies for the treatment of postmenopausal women with HR + and HER2 - mBC.

    METHODS: A Markov model was developed to analyze the cost-effectiveness of the therapies over a 15-year time horizon from a public healthcare payer's perspective. The efficacy and utility parameters were determined via a systematic search of the literature. Direct medical care costs were used. A discount rate of 2% was applied for costs and outcomes. Subgroup analysis was performed for non-visceral metastasis. A series of sensitivity analyses, including probabilistic sensitivity analysis (PSA) and threshold analysis were performed.

    RESULTS: Base-case analyses estimated incremental cost-effectiveness ratios (ICERs) of 3 million and 6 million Japanese yen (JPY)/quality-adjusted life year (QALY) gained for TOR and FUL 500 mg relative to EXE, respectively. FUL 250 mg and EXE + EVE were dominated. The overall survival (OS) highly influenced the ICER. With a willingness-to-pay (WTP) threshold of 5 million JPY/QALY, the probability of TOR being cost-effective was the highest. Subgroup analysis in non-visceral metastasis revealed 0.4 and 10% reduction in ICER from the base-case results of FUL5 500 mg versus EXE and TOR versus EXE, respectively, while threshold analysis indicated EVE and FUL prices should be reduced 73 and 30%, respectively.

    CONCLUSION: As a second-line therapy for postmenopausal women with HR +/HER2 - mBC, TOR may be cost-effective relative to other alternatives and seems to be the most favorable choice, based on a WTP threshold of 5 million JPY/QALY. FUL 250 mg is expected to be as costly and effective as EXE. The cost-effectiveness of EXE + EVE and FUL 500 mg could be improved by a large price reduction. However, the results are highly sensitive to the hazard ratio of OS. Policy makers should carefully interpret and utilize these findings.

    Matched MeSH terms: Everolimus/therapeutic use
  4. Sasongko TH, Ismail NF, Zabidi-Hussin Z
    Cochrane Database Syst Rev, 2016 Jul 13;7:CD011272.
    PMID: 27409709 DOI: 10.1002/14651858.CD011272.pub2
    BACKGROUND: Previous studies have shown potential benefits of rapamycin or rapalogs for treating people with tuberous sclerosis complex. Although everolimus (a rapalog) is currently approved by the FDA (U.S. Food and Drug Administration) and the EMA (European Medicines Agency) for tuberous sclerosis complex-associated renal angiomyolipoma and subependymal giant cell astrocytoma, applications for other manifestations of tuberous sclerosis complex have not yet been established. A systematic review is necessary to establish the clinical value of rapamycin or rapalogs for various manifestations in tuberous sclerosis complex.

    OBJECTIVES: To determine the effectiveness of rapamycin or rapalogs in people with tuberous sclerosis complex for decreasing tumour size and other manifestations and to assess the safety of rapamycin or rapalogs in relation to their adverse effects.

    SEARCH METHODS: Relevant studies were identified by authors from the Cochrane Central Register of Controlled Trials (CENTRAL), Ovid MEDLINE, and clinicaltrials.gov. Relevant resources were also searched by the authors, such as conference proceedings and abstract books of conferences, from e.g. the Tuberous Sclerosis Complex International Research Conferences, other tuberous sclerosis complex-related conferences and the Human Genome Meeting. We did not restrict the searches by language as long as English translations were available for non-English reports.Date of the last searches: 14 March 2016.

    SELECTION CRITERIA: Randomized or quasi-randomized studies of rapamycin or rapalogs in people with tuberous sclerosis complex.

    DATA COLLECTION AND ANALYSIS: Data were independently extracted by two authors using standard acquisition forms. The data collection was verified by one author. The risk of bias of each study was independently assessed by two authors and verified by one author.

    MAIN RESULTS: Three placebo-controlled studies with a total of 263 participants (age range 0.8 to 61 years old, 122 males and 141 females, with variable lengths of study duration) were included in the review. We found high-quality evidence except for response to skin lesions which was judged to be low quality due to the risk of attrition bias. Overall, there are 175 participants in the treatment arm (rapamycin or everolimus) and 88 in the placebo arm. Participants all had tuberous sclerosis complex as proven by consensus diagnostic criteria as a minimum. The quality in the description of the study methods was mixed, although we assessed most domains as having a low risk of bias. Blinding of treatment arms was successfully carried out in all of the studies. However, two studies did not report allocation concealment. Two of the included studies were funded by Novartis Pharmaceuticals.Two studies (235 participants) used oral (systemic) administration of everolimus (rapalog). These studies reported response to tumour size in terms of the number of individuals with a reduction in the total volume of tumours to 50% or more relative to baseline. Significantly more participants in the treatment arm (two studies, 162 participants, high quality evidence) achieved a 50% reduction in renal angiomyolipoma size, risk ratio 24.69 (95% confidence interval 3.51 to 173.41) (P = 0.001). For the sub-ependymal giant cell astrocytoma, our analysis of one study (117 participants, high quality evidence) showed significantly more participants in the treatment arm achieved a 50% reduction in tumour size, risk ratio 27.85 (95% confidence interval 1.74 to 444.82) (P = 0.02). The proportion of participants who showed a skin response from the two included studies analysed was significantly increased in the treatment arms, risk ratio 5.78 (95% confidence interval 2.30 to 14.52) (P = 0.0002) (two studies, 224 participants, high quality evidence). In one study (117 participants), the median change of seizure frequency was -2.9 in 24 hours (95% confidence interval -4.0 to -1.0) in the treatment group versus -4.1 in 24 hour (95% confidence interval -10.9 to 5.8) in the placebo group. In one study, one out of 79 participants in the treatment group versus three of 39 in placebo group had increased blood creatinine levels, while the median percentage change of forced expiratory volume at one second in the treatment arm was -1% compared to -4% in the placebo arm. In one study (117 participants, high quality evidence), we found that those participants who received treatment had a similar risk of experiencing adverse events compared to those who did not, risk ratio 1.07 (95% confidence interval 0.96 - 1.20) (P = 0.24). However, as seen from two studies (235 participants, high quality evidence), the treatment itself led to significantly more adverse events resulting in withdrawal, interruption of treatment, or reduction in dose level, risk ratio 3.14 (95% confidence interval 1.82 to 5.42) (P < 0.0001).One study (28 participants) used topical (skin) administration of rapamycin. This study reported response to skin lesions in terms of participants' perception towards their skin appearance following the treatment. There was a tendency of an improvement in the participants' perception of their skin appearance, although not significant, risk ratio 1.81 (95% confidence interval 0.80 to 4.06, low quality evidence) (P = 0.15). This study reported that there were no serious adverse events related to the study product and there was no detectable systemic absorption of the rapamycin during the study period.

    AUTHORS' CONCLUSIONS: We found evidence that oral everolimus significantly increased the proportion of people who achieved a 50% reduction in the size of sub-ependymal giant cell astrocytoma and renal angiomyolipoma. Although we were unable to ascertain the relationship between the reported adverse events and the treatment, participants who received treatment had a similar risk of experiencing adverse events as compared to those who did not receive treatment. Nevertheless, the treatment itself significantly increased the risk of having dose reduction, interruption or withdrawal. This supports ongoing clinical applications of oral everolimus for renal angiomyolipoma and subependymal giant cell astrocytoma. Although oral everolimus showed beneficial effect on skin lesions, topical rapamycin only showed a non-significant tendency of improvement. Efficacy on skin lesions should be further established in future research. The beneficial effects of rapamycin or rapalogs on tuberous sclerosis complex should be further studied on other manifestations of the condition.

    Matched MeSH terms: Everolimus/therapeutic use*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links