METHOD: This is a single-center, single-dose, open-label, randomized, 2-treatment, 2-sequence and 2-period crossover study with a washout period of 7 days. Paracetamol/Orphenadrine tablets were administered after a 10-h fast. Blood samples for pharmacokinetic analysis were collected at scheduled time intervals prior to and up to 72 h after dosing. Blood samples were centrifuged, and separated plasma were kept frozen (- 15 °C to - 25 °C) until analysis. Plasma concentrations of orphenadrine and paracetamol were quantified using liquid-chromatography-tandem mass spectrometer using diphenhydramine as internal standard. The pharmacokinetic parameters AUC0-∞, AUC0-t and Cmax were determined using plasma concentration time profile for both preparations. Bioequivalence was assessed according to the ASEAN guideline acceptance criteria for bioequivalence which is the 90% confidence intervals of AUC0-∞, AUC0-t and Cmax ratio must be within the range of 80.00-125.00%.
RESULTS: There were 28 healthy subjects enrolled, and 27 subjects completed this trial. There were no significant differences observed between the AUC0-∞, AUC0-t and Cmax of both test and reference preparations in fasted condition. The 90% confidence intervals for the ratio of AUC0-t (100.92-111.27%), AUC0-∞ (96.94-108.08%) and Cmax (100.11-112.50%) for orphenadrine (n = 25); and AUC0-t (94.29-101.83%), AUC0-∞ (94.77-101.68%) and Cmax (87.12-101.20%) for paracetamol (n = 27) for test preparation over reference preparation were all within acceptable bioequivalence range of 80.00-125.00%.
CONCLUSION: The test preparation is bioequivalent to the reference preparation and can be used interchangeably.
TRIAL REGISTRATION: NMRR- 17-1266-36,001; registered and approved on 12 September 2017.
METHODS: A sample of 3895 individuals without known diabetes underwent detailed interview and health examination, including anthropometric and biochemical evaluation, between 2004 and 2007. Pearson's correlation, analysis of variance and multiple linear regression analyses were used to examine the influence of ethnicity on HbA(1c) .
RESULTS: As fasting plasma glucose increased, HbA(1c) increased more in Malays and Indians compared with Chinese after adjustment for age, gender, waist circumference, serum cholesterol, serum triglyceride and homeostasis model assessment of insulin resistance (P-interaction < 0.001). This translates to an HbA(1c) difference of 1.1 mmol/mol (0.1%, Indians vs. Chinese), and 0.9 mmol/mol (0.08%, Malays vs. Chinese) at fasting plasma glucose 5.6 mmol/l (the American Diabetes Association criterion for impaired fasting glycaemia); and 2.1 mmol/mol (0.19%, Indians vs. Chinese) and 2.6 mmol/mol (0.24%, Malays vs. Chinese) at fasting plasma glucose 7.0 mmol/l, the diagnostic criterion for diabetes mellitus.
CONCLUSIONS: Using HbA(1c) in place of fasting plasma glucose will reclassify different proportions of the population in different ethnic groups. This may have implications in interpretation of HbA(1c) results across ethnic groups and the use of HbA(1c) for diagnosing diabetes mellitus.