Displaying publications 1 - 20 of 70 in total

Abstract:
Sort:
  1. Ooi EZH, Ab Karim NA, Chan ES, Wang Y, Tang TK, Tong SC, et al.
    J Sci Food Agric, 2024 May;104(7):3958-3970.
    PMID: 38284502 DOI: 10.1002/jsfa.13278
    BACKGROUND: As a by-product of the palm oil industry, palm stearin is often overlooked despite having several beneficial properties, such as excellent stability, which is critically essential to meet the demand of the global food trend in producing safer processed food. Specifically, deep frying of food is often associated with the production of toxic compounds that could potentially migrate into the food system when oils are degraded under continuous heating. The incorporation of palm stearin is regarded as a cost-effective and efficient method to modify the fatty acid composition of oils, enhance the frying qualities and lower the degradation rate.

    RESULTS: This study blended 5% and 10% palm stearin into palm oil to investigate the deep-frying performance and impact on food quality. Increasing the palm stearin content improved the frying oil's oxidative and hydrolytic stability, evidenced by reduction of total polar material, free fatty acid and total oxidation value. Addition of palm stearin increased the slip melting point which improved the oil's oxidative stability but no significant increase in oil content of instant noodles was observed. Scanning electron microscopy and fluorescence microscopy showed the formation of larger pores in the noodle structure that facilitated oil retention.

    CONCLUSION: Blending palm stearin into frying oil enhanced the frying stability and minimally affected the oil uptake in instant noodles. This article presents the viability of blending palm stearin into frying oils to develop longer-lasting frying oils. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

    Matched MeSH terms: Fatty Acids, Nonesterified
  2. Ibrahim NUA, Abd Aziz S, Hashim N, Jamaludin D, Khaled AY
    J Food Sci, 2019 Apr;84(4):792-797.
    PMID: 30861127 DOI: 10.1111/1750-3841.14436
    Total polar compounds (TPC) and free fatty acids (FFA) are important indicators in evaluating the quality of frying oil. Conventional methods to determine TPC and FFA are often time consuming, involved laboratory analyses which required skilled personnel and used substantial amount of harmful solvent. In this study, dielectric spectroscopy technique was used to investigate the relation between dielectric property of refined, bleached and deodorized palm olein (RBDPO) during deep frying with TPC and FFA. In total, 150 batches of French fries were intermittently fried at 185 ± 5 °C for 7 hr a day over 5 consecutive days. A total of 30 frying oil samples were collected. The dielectric property of frying oil samples were measured using impedance analyzer with frequencies ranging from 100 Hz to 10 MHz. The TPC of frying oil samples were measured with a Testo 270, while the FFA analysis was done using Malaysian Palm Oil Board (MPOB) test method. Results showed that dielectric constant, TPC and FFA of RBDPO increased as the frying time increased. Dielectric constant increased from 3.09 to 3.17, while TPC and FFA increased from 9.96 to 19.52 and from 0.08% to 0.36%, respectively. Partial least square (PLS) analysis produced good prediction of TPC and FFA with the application of genetic algorithm (GA). Model developed for prediction of TPC and FFA yielded highly significant correlation with R2 of 0.91 and 0.95, respectively and both had root mean square error in cross-validation (RMSECV) of 1.06%. This study demonstrates the potential of dielectric spectroscopy in monitoring palm olein degradation during frying. PRACTICAL APPLICATION: The application of dielectric spectroscopy to detect degradation of palm olein during frying was studied. The dielectric property of palm olein during frying has successfully correlated with TPC and FFA. The model developed in this study could be used for the development of a sensing system for palm olein degradation monitoring.
    Matched MeSH terms: Fatty Acids, Nonesterified/analysis; Fatty Acids, Nonesterified/chemistry
  3. Nor Shafizah I, Irmawati R, Omar H, Yahaya M, Alia Aina A
    Food Chem, 2022 Mar 30;373(Pt B):131668.
    PMID: 34848088 DOI: 10.1016/j.foodchem.2021.131668
    In this study, potassium oxide supported on dolomite adsorbent was used as an adsorbent for free fatty acids (FFAs) treatment in crude palm oil (CPO). The characteristics of the adsorbent were determined by TGA, XRD, SEM, BET and TPD-CO2. Taguchi method was utilized for experimental design and optimum condition determination. There were four parameters and three levels involved in this study: time (30, 60, 90 min), stirring rate (300, 500, 700 rpm), adsorbent dosage (1, 3, 5 wt%) and K2O concentration (5, 10, 15 wt%). The adsorbent had a larger pore size, higher basic strength, and more basic sites in greater efficiency (63%) in FFAs removal from CPO. The optimum conditions were at 30 min time, 700 rpm stirring rate, 5 wt% adsorbent dosage and 15 wt% K2O concentration. Taguchi method simplified determination of experimental parameters and minimized the operating costs.
    Matched MeSH terms: Fatty Acids, Nonesterified*
  4. Rosli NSA, Abd Gani S, Khayat ME, Zaidan UH, Ismail A, Abdul Rahim MBH
    Mol Cell Biochem, 2023 Mar;478(3):517-530.
    PMID: 35943655 DOI: 10.1007/s11010-022-04528-8
    The benefits of gut microbiota-derived short-chain fatty acids (SCFAs) towards health and metabolism have been emerging since the past decade. Extensive studies have been carried out to understand the mechanisms responsible in initiating the functionalities of these SCFAs towards body tissues, which greatly involves the SCFA-specific receptors free fatty acid receptor 2 (FFAR2) and free fatty acid receptor 3 (FFAR3). This review intends to discuss the potential of SCFAs particularly in regulating insulin secretion in pancreatic β-cells, by explaining the production of SCFAs in the gut, the fate of each SCFAs after their production, involvement of FFAR2 and FFAR3 signalling mechanisms and their impacts on insulin secretion. Increased secretion of insulin after SCFAs treatments were reported in many studies, but contradicting evidence also exist in several other studies. Hence, no clear consensus was achieved in determining the true potential of SCFA in regulating insulin secretion. In this review, we explore how such differences were possible and hopefully be able to shed some perspectives in understanding SCFAs-signalling behaviour and preferences.
    Matched MeSH terms: Fatty Acids, Nonesterified*
  5. Wang Y, Shi J, Xu YJ, Tan CP, Liu Y
    Food Chem, 2024 Apr 16;438:137400.
    PMID: 38039864 DOI: 10.1016/j.foodchem.2023.137400
    The digestion behavior of lipids plays a crucial role in their nutritional bioaccessibility, which subsequently impacts human health. This study aims to investigate potential variations in lipid digestion profiles among individuals of different ages, considering the distinct physiological functions of the gastrointestinal tract in infants, aging populations, and healthy young adults. The digestion fates of high oleic peanut oil (HOPO), sunflower oil (SO), and linseed oil (LINO) were investigated using in vitro digestion models representing infants, adults, and elders. Comparatively, lipid digestion proved to be more comprehensive in adults, leading to free fatty acid (FFA) levels of 64.53%, 62.32%, and 57.90% for HOPO, SO, and LINO, respectively. Besides, infants demonstrated propensity to selectively release FFAs with shorter chain lengths and higher saturation levels during the digestion. In addition, in the gastric phase, particle sizes among the elderly were consistently larger than those observed in infants and adults, despite adults generating approximately 15% FFAs within the stomach. In summary, this study enhances our fundamental comprehension of how lipids with varying degrees of unsaturation undergo digestion in diverse age groups.
    Matched MeSH terms: Fatty Acids, Nonesterified*
  6. Sambanthamurthi R, Rajanaidu N, Hasnah Parman S
    Biochem Soc Trans, 2000 Dec;28(6):769-70.
    PMID: 11171201
    The oil palm mesocarp contains an endogenous lipase which is strongly activated at low temperature. Lipase activity is thus very conveniently assayed by prior exposure of the fruits to low temperature. More than 100 oil palm samples from the germplasm collection of the Palm Oil Research Institute of Malaysia (now known as the Malaysian Palm Oil Board) were screened for non-esterified fatty acid activity using both the low-temperature activation assay and a radioactivity assay. The results showed good correlation between assay procedures. The different samples had a very wide range of lipase activity. Elaeis oleifera samples had significantly lower lipase activity compared with E. guineensis (var. tenera) samples. Even within E. guineensis (var. tenera), there was a wide range of activity. The results confirmed that lipase activity is genotype-dependent. Selection for lipase genotypes is thus possible and this will have obvious commercial value.
    Matched MeSH terms: Fatty Acids, Nonesterified/metabolism*
  7. Tan CH, Ariffin AA, Ghazali HM, Tan CP, Kuntom A, Choo AC
    J Food Sci Technol, 2017 Jun;54(7):1757-1764.
    PMID: 28720930 DOI: 10.1007/s13197-017-2569-9
    This article reports on the changes of oxidation indices and minor components of low free fatty acid (FFA) and freshly extracted crude palm oils after storage at ambient (28 ± 1 C) and 60 C for 77 days. The changes in peroxide value (PV), FFA, extinction coefficient at 233 and 269 nm (K233 and K269), bleachability index (DOBI), carotene and vitamin E contents were monitored. PV, FFA, K233 and K269 of both oil samples increased as storage progressed while the values of carotene and vitamin E contents decreased. At the end of storage period at 60 °C, the carotene content of low FFA crude palm oil was 4.24 ppm. The storage conditions used led to the loss of entire vitamin E fractions of both oil samples as well as a reduction in DOBI values except for freshly extracted crude palm oil stored at ambient temperature.
    Matched MeSH terms: Fatty Acids, Nonesterified
  8. Loo JL, Khoramnia A, Lai OM, Long K, Ghazali HM
    Molecules, 2014 Jun 23;19(6):8556-70.
    PMID: 24959682 DOI: 10.3390/molecules19068556
    Mycelium-bound lipase (MBL), from a locally isolated Geotrichum candidum strain, was produced and characterized as a natural immobilized lipase. A time course study of its lipolytic activity in 1 L liquid broth revealed the maximum MBL activity at 4 h for mycelium cells harvested after 54 h. The yield and specific activity of MBL were 3.87 g/L dry weight and 508.33 U/g protein, respectively, while less than 0.2 U/mL lipase activity was detected in the culture supernatant. Prolonged incubation caused release of the bound lipase into the growth medium. The growth pattern of G. candidum, and production and properties of MBL were not affected by the scale. The stability of mycelia harboring lipase (MBL), harvested and lyophilized after 54 h, studied at 4 °C depicted a loss of 4.3% and 30% in MBL activity after 1 and 8 months, while the activity of free lipase was totally lost after 14 days of storage. The MBL from G. candidum displayed high substrate selectivity for unsaturated fatty acids containing a cis-9 double bond, even in crude form. This unique specificity of MBL could be a direct, simple and inexpensive way in the fats and oil industry for the selective hydrolysis or transesterification of cis-9 fatty acid residues in natural triacylglycerols.
    Matched MeSH terms: Fatty Acids, Nonesterified/metabolism*; Fatty Acids, Nonesterified/chemistry
  9. Ferrario V, Veny H, De Angelis E, Navarini L, Ebert C, Gardossi L
    Biomolecules, 2013 Aug 13;3(3):514-34.
    PMID: 24970178 DOI: 10.3390/biom3030514
    Immobilized lipases were applied to the enzymatic conversion of oils from spent coffee ground into biodiesel. Two lipases were selected for the study because of their conformational behavior analysed by Molecular Dynamics (MD) simulations taking into account that immobilization conditions affect conformational behavior of the lipases and ultimately, their efficiency upon immobilization. The enzymatic synthesis of biodiesel was initially carried out on a model substrate (triolein) in order to select the most promising immobilized biocatalysts. The results indicate that oils can be converted quantitatively within hours. The role of the nature of the immobilization support emerged as a key factor affecting reaction rate, most probably because of partition and mass transfer barriers occurring with hydrophilic solid supports. Finally, oil from spent coffee ground was transformed into biodiesel with yields ranging from 55% to 72%. The synthesis is of particular interest in the perspective of developing sustainable processes for the production of bio-fuels from food wastes and renewable materials. The enzymatic synthesis of biodiesel is carried out under mild conditions, with stoichiometric amounts of substrates (oil and methanol) and the removal of free fatty acids is not required.
    Matched MeSH terms: Fatty Acids, Nonesterified
  10. Lieu T, Yusup S, Moniruzzaman M
    Bioresour Technol, 2016 Jul;211:248-56.
    PMID: 27019128 DOI: 10.1016/j.biortech.2016.03.105
    Recently, a great attention has been paid to advanced microwave technology that can be used to markedly enhance the biodiesel production process. Ceiba pentandra Seed Oil containing high free fatty acids (FFA) was utilized as a non-edible feedstock for biodiesel production. Microwave-assisted esterification pretreatment was conducted to reduce the FFA content for promoting a high-quality product in the next step. At optimum condition, the conversion was achieved 94.43% using 2wt% of sulfuric acid as catalyst where as 20.83% conversion was attained without catalyst. The kinetics of this esterification reaction was also studied to determine the influence of factors on the rate of reaction and reaction mechanisms. The results indicated that microwave-assisted esterification was of endothermic second-order reaction with the activation energy of 53.717kJ/mol.
    Matched MeSH terms: Fatty Acids, Nonesterified
  11. Jahurul MHA, Shian OK, Sharifudin MS, Hasmadi M, Lee JS, Mansoor AH, et al.
    J Food Sci Technol, 2021 Mar;58(3):902-910.
    PMID: 33678873 DOI: 10.1007/s13197-020-04604-1
    The objective of this study was to optimize the extraction of oil from pre-dried roselle seeds using response surface methodology (RSM). We also determined the oxidative stability of oil extracted from oven and freeze-dried roselle seed in terms of iodine value (IV), free fatty acid (FFA) value, peroxide value (PV), P-anisidine and total oxidation values (TOTOX value). The RSM was designated based on the central composite design with the usage of three optimum parameters ranged from 8 to 16 g of sample weight, 250-350 mL of solvent volume, and 6-8 h of extraction time. The highest oil yielded from roselle seed using the optimization process was 22.11% with the parameters at sample weight of 14.4 g, solvent volume of 329.70 mL, and extraction time of 7.6 h. Besides, the oil extracted from the oven dried roselle seed had the values of 89.04, 2.11, 4.13, 3.76 and 12.03 for IV, FFA, PV, P-anisidine, and TOTOX values, respectively. While for the oil extracted from freeze-dried roselle seed showed IV of 90.31, FFA of 1.64, PV of 2.47, P-anisidine value of 3.48, and TOTOX value of 8.42. PV and TOTOX values showed significant differences whereas; IV, FFA, and P-anisidine values showed no significant differences between the oven and freeze-dried roselle seed oils.
    Matched MeSH terms: Fatty Acids, Nonesterified
  12. Idrus NFM, Zzaman W, Yang TA, Easa AM, Sharifudin MS, Noorakmar BW, et al.
    Food Sci Biotechnol, 2017;26(4):911-920.
    PMID: 30263619 DOI: 10.1007/s10068-017-0132-0
    Peanut (Arachis hypogaea) is an important source of protein and lipid globally. The effect of superheated-steam roasting on quality of peanut oil was evaluated based on physicochemical quality parameters. Three roasting temperatures (150, 200, and 250 °C) were used for different periods of roasting time and the obtained results were compared with those of conventional roasting. At 250 °C, superheated-steam roasted peanuts yielded more oil (26.84%) than conventionally roasted peanuts (24.85%). Compared with conventional roasting, superheated-steam roasting resulted in lower oil color, peroxide, p-anisidine, free fatty acid, conjugated diene and triene, and acid values and higher viscosity and iodine values in the roasted peanut oil. These values were significantly different from each other (p 
    Matched MeSH terms: Fatty Acids, Nonesterified
  13. Suseno, S.H., Tajul, A.Y
    MyJurnal
    This study was aimed at improving the quality of fish oil. A synthetic filter aid (Magnesol XL) was used at various concentration (1, 3 and 5%) and time levels (5, 10, 15 and 20 minutes) to adsorb the polar compound products of the oil. Some physical and chemical properties (viscosity, colour, density, acid value, peroxide value and free fatty acid) of the treated oil were determined. Results indicate that Magnesol XL at 1 and 3% levels significantly reduced the acid value, peroxide value and free fatty acid contents of the treated oil.
    Treatment of the fish oil with Magnesol XL at 1 and 3% levels was also better than treatment with 5% Magnesol XL on improving the fish oil quality. The fatty acid profile for Σ n3 at untreated and treatment adsorbent showed significant at 0.05 level but not significant at Magnesol XL adsorbent concentration 1-5%.
    Matched MeSH terms: Fatty Acids, Nonesterified
  14. Fan, H.Y., Sharifudin, M.S., Hasmadi, M., Chew, H.M.
    MyJurnal
    A study to measure frying quality and stability of rice bran oil (RBO) compared to palm olein (PO) was conducted. The oils were used to fry French fries continuously for six hours a day up to five days at a temperature of 185 ± 5°C. Oil samples were collected and analyzed for free fatty acid (FFA), peroxide value (PV), smoke point, p-anisidine value (p-AV), iodine value (IV) and colour. At the end of the frying period for both oil samples, FFA, PV, colour and p-AV were increased whereas the IV and smoke point decreased. The rate of FFA formation of RBO was slightly lower which increased from 0.142% to 0.66% compared to PO which was from 0.079% to 0.93%. The PV of RBO showed consistent increased from 3.9 meq/kg to 13.4 meq/kg whereas PO with initial value at 3.4 meq/kg increased to 34.6 meq/kg on the fifth day. Smoke point of RBO and PO progressively dropped from 235°C to 188°C and 220°C to 178°C, respectively. The level of p-AV for RBO increased from 12.19 to 32.65 from the initial to the end of frying day whereas PO had higher rate of changes in p-AV which was from 10.45 to 60.75. The IV decreased over frying time where IV of RBO decreased from 94.5 to 66.5 while IV of PO decreased from 50.9 to 44.6. The colour of RBO showed increased in redness and yellowness but PO was darker at the end of the frying trial. In general, RBO showed better stability than the PO in deep frying of French fries.
    Matched MeSH terms: Fatty Acids, Nonesterified
  15. Junaidah, M.J., Norizzah, A.R., Zaliha, O., Mohamad, S.
    MyJurnal
    The optimisation of fresh fruit bunch (FFB) sterilisation process was studied using different degree of FFB ripeness (i.e. under-ripe, ripe, overripe) and loose fruits. This study was carried out with the application of Response Surface Methodology (RSM), based on the interrelation between process temperature (X1; 100 to 120oC) and time (X2; 20 to 80 min) used for FFB sterilisation process on Free Fatty Acid, FFA (Y1,underripe FFB; Y2,ripe FFB; Y3,Overripe FFB; and Y4,loose fruits). Thirteen experimental runs were conducted per degree of ripeness using laboratory scale steriliser with varying sterilisation temperature and time, as generated by Central Composite Rotatable Design (CCRD). Raw experimental data trend showed substantial FFA increment with the increment of FFB maturity. Four polynomial models were found appropriate to predict the responses within experimental regions. Analysis regarding factor influences on each response was performed using Analysis of Variance (ANOVA) and graphical analysis. For under-ripe and ripe FFB, the temperature exerted higher and significant (p
    Matched MeSH terms: Fatty Acids, Nonesterified
  16. Zarinah, Z., Maaruf, A.G., Nazaruddin, R., Wong, W.W.W., Xuebing, X.
    MyJurnal
    Canarium ovatum oil Engl. (pili nut oil) was extracted by using cold press method and then the
    physico-chemical properties of the oil samples, roasted pili nut oil (RPNO) and unroasted pili
    nut oil (UPNO) such as iodine value (IV), peroxide value (PV), acid value (% FFA), solid fat
    content (SFC), fatty acid composition and triacylglycerol (TAG) composition were determined.
    The percentage of oil yield and iodine value for RPNO and UPNO were showed no significant
    different, wheareas there were significantly different for the peroxide value and percentage of
    free fatty acid. The solid fat content for RPNO and UPNO were similar to the palm olein oil
    and both completely melt at 25°C. Both samples, RPNO and UPNO were contained 50.70%
    and 52.59% of oleic acid and were found not contain the trisaturated TAGs.
    Matched MeSH terms: Fatty Acids, Nonesterified
  17. Koguleshun S, Pua FL, Shamala G, Nabihah S
    Sains Malaysiana, 2015;44:1573-1577.
    Oil palm empty fruit bunch (EFB) contributes to a large quantity of lignocellulosic waste. It is an abundantly available
    waste biomass in Malaysia. This project was aimed to utilize the waste materials for a better benefit. EFB were used as
    raw material to prepare a new solid catalyst for biodiesel production. Solid acid catalyst derived from EFB was used to
    catalyze the esterification process in biodiesel production from waste cooking oil. Solid acid catalyst was prepared by
    direct impregnation with transition metal sulfides, Fe2
    (SO4
    )3
    . This new catalyst was used to catalyze the esterification of
    high free fatty acid (FFA) value oil, e.g. waste cooking oils (WCOs) as pre-treatment step prior to biodiesel production.
    The highest catalytic activity with 90.95% esterification rate was achieved. The catalyst can be easily separated for
    reuse compared to homogenous catalyst which are used in biodiesel production. EFB has the potential to be converted
    into useful feedstock and the derived catalyst can replace the traditional liquid acid catalyst in biodiesel production
    especially for high acid value content feedstock.
    Matched MeSH terms: Fatty Acids, Nonesterified
  18. Adiiba SH, Chan ES, Lee YY, Amelia, Chang MY, Song CP
    J Sci Food Agric, 2022 Dec;102(15):6921-6929.
    PMID: 35662022 DOI: 10.1002/jsfa.12053
    BACKGROUND: Crude palm oil (CPO) is rich with phytonutrients such as carotenoids and tocols which possesses many health benefits. The aim of this research was to develop a methanol-free process to produce palm phytonutrients via enzymatic hydrolysis. In this work, triacylglycerol was hydrolyzed into free fatty acids (FFAs) using three different types of liquid lipases derived from Aspergillus oryzae (ET 2.0), Aspergillus niger (Habio) and Candida antartica (CALB).

    RESULTS: ET 2.0 was found to be the best enzyme for hydrolysis. Under the optimum condition, the FFA content achievable was 790 g kg-1 after 24 h of reaction with 1:1 water-to-oil mass ratio at 50 °C and stirring speed of 9 × g. Furthermore, with the addition of 2 g kg-1 ascorbic acid, it was found that 98% of carotenoids and 96% of tocols could be retained after hydrolysis.

    CONCLUSION: This work shows that enzymatic hydrolysis, which is inherently safer, cleaner and sustainable is feasible to replace the conventional methanolysis for the production of palm phytonutrients. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

    Matched MeSH terms: Fatty Acids, Nonesterified
  19. Ferdaos N, Harada A, Masuda E, Kasai S, Horaguchi T, Yoshizawa K
    Nutr Cancer, 2023;75(3):1005-1013.
    PMID: 36714982 DOI: 10.1080/01635581.2022.2163669
    Caffeine is a widely consumed stimulant, known for its positive effects on physical and mental performance. These effects are potentially beneficial for ameliorating cancer-related fatigue, which affects the quality of life of patients with cancer. This study aimed to determine the anti-fatigue and antitumor effects of caffeine in tumor-bearing mice. BALB/c mice were intravenously injected with C26 colon carcinoma cells and fed with normal or 0.05% caffeine-supplemented diet. Fatigue-like behavior was assessed by running performance using a treadmill test. Lung, blood, liver, muscle, and epididymal adipose tissue samples were collected on day 13 and examined. The antitumor effect of caffeine was assessed using subcutaneous tumor-bearing mice fed with 0.05% caffeine-supplemented diet, and the tumor volume was measured. C26 tumor-bearing mice showed fatigue-like behavior associated with hypoglycemia, depleted liver glycogen and non-esterified fatty acid (NEFA) levels. C26 tumor-bearing mice fed with 0.05% caffeine-supplemented diet showed improved running performance associated with restored NEFA levels. However, exacerbated hypoglycemia and liver glycogen levels after caffeine consumption may be due to tumor-induced catabolic signals, as the tumor volume was not affected. Collectively, caffeine may exert anti-fatigue effects through enhanced lipolysis leading to restored NEFA levels, which can be used as an alternative energy source.
    Matched MeSH terms: Fatty Acids, Nonesterified
  20. Lokman IM, Rashid U, Zainal Z, Yunus R, Taufiq-Yap YH
    J Oleo Sci, 2014;63(9):849-55.
    PMID: 25099911
    In the current research work, effect of microwave irradiation energy on the esterification of palm fatty acid distillate (PFAD) to produce PFAD methyl ester / biodiesel was intensively appraised. The PFAD is a by-product from refinery of crude palm oil consisting >85% of free fatty acid (FFA). The esterification reaction process with acid catalyst is needed to convert the FFA into fatty acid methyl ester or known as biodiesel. In this work, fabricated microwave-pulse width modulation (MPWM) reactor with controlled temperature was designed to be capable to increase the PFAD biodiesel production rate. The classical optimization technique was used in order to study the relationship and the optimum condition of variables involved. Consequently, by using MPWM reactor, mixture of methanol-to-PFAD molar ratio of 9:1, 1 wt.% of sulfuric acid catalyst, at 55°C reaction temperature within 15 min reaction time gave 99.5% of FFA conversion. The quality assessment and properties of the product were analyzed according to the American Society for Testing and Materials (ASTM), European (EN) standard methods and all results were in agreement with the standard requirements. It revealed that the use of fabricated MPWM with controlled temperature was significantly affecting the rate of esterification reaction and also increased the production yield of PFAD methyl ester.
    Matched MeSH terms: Fatty Acids, Nonesterified/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links