Displaying publications 1 - 20 of 22 in total

  1. Shahinuzzaman M, Yaakob Z, Anuar FH, Akhtar P, Kadir NHA, Hasan AKM, et al.
    Sci Rep, 2020 07 02;10(1):10852.
    PMID: 32616768 DOI: 10.1038/s41598-020-67765-1
    As synthetic antioxidants that are widely used in foods are known to cause detrimental health effects, studies on natural additives as potential antioxidants are becoming increasingly important. In this work, the total phenolic content (TPC) and antioxidant activity of Ficus carica Linn latex from 18 cultivars were investigated. The TPC of latex was calculated using the Folin-Ciocalteu assay. 1,1-Diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and ferric ion reducing antioxidant power (FRAP) were used for antioxidant activity assessment. The bioactive compounds from F. carica latex were extracted via maceration and ultrasound-assisted extraction (UAE) with 75% ethanol as solvent. Under the same extraction conditions, the latex of cultivar 'White Genoa' showed the highest antioxidant activity of 65.91% ± 1.73% and 61.07% ± 1.65% in DPPH, 98.96% ± 1.06% and 83.04% ± 2.16% in ABTS, and 27.08 ± 0.34 and 24.94 ± 0.84 mg TE/g latex in FRAP assay via maceration and UAE, respectively. The TPC of 'White Genoa' was 315.26 ± 6.14 and 298.52 ± 9.20 µg GAE/mL via the two extraction methods, respectively. The overall results of this work showed that F. carica latex is a potential natural source of antioxidants. This finding is useful for further advancements in the fields of food supplements, food additives and drug synthesis in the future.
    Matched MeSH terms: Ficus/chemistry*
  2. Misbah H, Aziz AA, Aminudin N
    PMID: 23718315 DOI: 10.1186/1472-6882-13-118
    Diabetes is a serious metabolic disorder affecting the metabolism of carbohydrate, protein and fat. A number of studies have shown that diabetes mellitus is associated with oxidative stress, leading to an increased production of reactive oxygen species. Ficus deltoidea is traditionally used in Malaysia for regulating blood sugar, blood pressure and cholesterol levels. The use of F. deltoidea as an alternative medicinal herb is increasingly gaining popularity with the sale of F. deltoidea tea bags and capsules in the local market. The present study was undertaken to investigate the antidiabetic and antioxidant activities of the fruits from different varieties of F. deltoidea, employing in vitro methods.
    Matched MeSH terms: Ficus/chemistry*
  3. Omar MH, Mullen W, Crozier A
    J Agric Food Chem, 2011 Feb 23;59(4):1363-9.
    PMID: 21261251 DOI: 10.1021/jf1032729
    Phenolic compounds in an aqueous infusion of leaves of Ficus deltoidea (Moraceae), a well-known herbal tea in Malaysia, were analyzed by HPLC coupled to photodiode array and fluorescence detectors and an electrospray ionization tandem mass spectrometer. Following chromatography of extracts on a reversed phase C(12) column, 25 flavonoids were characterized and/or tentatively identified with the main constituents being flavan-3-ol monomers, proanthocyanidins, and C-linked flavone glycosides. The proanthocyanidins were dimers and trimers comprising (epi)catechin and (epi)afzelechin units. No higher molecular weight proanthocyanidin polymers were detected. The antioxidant activity of F. deltoidea extract was analyzed using HPLC with online antioxidant detection. This revealed that 85% of the total antioxidant activity of the aqueous F. deltoidea infusion was attributable to the flavan-3-ol monomers and the proanthocyanidins.
    Matched MeSH terms: Ficus/chemistry*
  4. Zakaria ZA, Hussain MK, Mohamad AS, Abdullah FC, Sulaiman MR
    Biol Res Nurs, 2012 Jan;14(1):90-7.
    PMID: 21278166 DOI: 10.1177/1099800410395378
    Ficus deltoidea (Family Moraceae) leaves have been used traditionally by the Malays to treat ailments such as wounds, sores, and rheumatism. The aim of the present study was to determine the anti-inflammatory activity of the aqueous extract of F. deltoidea leaf (FDA) using acute and chronic inflammatory models. FDA, in the doses of 30, 100, and 300 mg/kg, was administered intraperitoneally in rats (n = 6) before the animals were subjected to the carrageenan-induced paw edema test, cotton pellet-induced granuloma test, and formalin test. The first two tests represent acute and chronic models of inflammation, respectively. The first and second phases of the formalin test represent neurogenic pain and inflammatory-mediated pain, respectively; thus, only the second phase was measured in the present study. Results showed that FDA exerted significant (p < .05) anti-inflammatory activity in all assays, with dose-response effects seen in the paw edema and formalin tests. In conclusion, the leaf of F. deltoidea possesses anti-inflammatory activity against acute and chronic inflammatory responses and against pain-associated inflammatory response. These findings justify the traditional uses of F. deltoidea leaves for treatment of inflammatory-mediated ailments.
    Matched MeSH terms: Ficus/chemistry*
  5. Fazliana MS, Muhajir H, Hazilawati H, Shafii K, Mazleha M
    Med J Malaysia, 2008 Jul;63 Suppl A:103-4.
    PMID: 19025006
    Aqueous extract of Ficus deltoidea var. agustifolia was examined for the subchronic toxicity effects in rats. Groups of 10 rats were given the extract daily by oral gavage for 90 days at 0 (control), 100 and 300mg/kg/body weight, respectively. Blood samples were collected upon sacrificed and analysed for haemogram and biochemistry. The results showed there were no significant changes of the blood parameters in all treated groups compared to the control.
    Matched MeSH terms: Ficus/chemistry*
  6. Krishnan P, Lee FK, Yap VA, Low YY, Kam TS, Yong KT, et al.
    J Nat Prod, 2020 01 24;83(1):152-158.
    PMID: 31935094 DOI: 10.1021/acs.jnatprod.9b01160
    Schwarzinicines A-G (1-7), representing the first examples of 1,4-diarylbutanoid-phenethylamine conjugates, were isolated from the leaves of Ficus schwarzii. The structures of these compounds were determined by detailed analysis of their MS, 1D and 2D NMR data. Compounds 1-4 exhibited pronounced vasorelaxant effects in the rat isolated aorta (Emax 106-120%; EC50 0.96-2.10 μM). However, compounds 1 and 2 showed no cytotoxic effects against A549, MCF-7, and HCT 116 human cancer cells (IC50 > 10 μM).
    Matched MeSH terms: Ficus/chemistry*
  7. Abubakar IB, Lim KH, Loh HS
    Nat Prod Res, 2015;29(22):2137-40.
    PMID: 25515603 DOI: 10.1080/14786419.2014.991927
    Tocotrienols have been reported to possess anticancer effects other than anti-inflammatory and antioxidant activities. This study explored the potential synergism of antiproliferative effects induced by individual alkaloid extracts of Ficus fistulosa, Ficus hispida and Ficus schwarzii combined with δ- and γ-tocotrienols against human brain glioblastoma (U87MG), lung adenocarcinoma (A549) and colorectal adenocarcinoma (HT-29) cells. Cell viability and morphological results demonstrated that extracts containing a mixture of alkaloids from the leaves and bark of F. schwarzii inhibited the proliferation of HT-29 cells, whereas the alkaloid extracts of F. fistulosa inhibited the proliferation of both U87MG and HT-29 cells and showed synergism in combined treatments with either δ- or γ-tocotrienol resulting in 2.2-34.7 fold of reduction in IC50 values of tocotrienols. The observed apoptotic cell characteristics in conjunction with the synergistic antiproliferative effects of Ficus species-derived alkaloids and tocotrienols assuredly warrant future investigations towards the development of a value-added chemotherapeutic regimen against cancers.
    Matched MeSH terms: Ficus/chemistry*
  8. Woon SM, Seng YW, Ling AP, Chye SM, Koh RY
    J Zhejiang Univ Sci B, 2014 Mar;15(3):295-302.
    PMID: 24599694 DOI: 10.1631/jzus.B1300123
    This study examined the anti-adipogenic effects of extracts of Ficus deltoidea var. deltoidia and var. angustifolia, a natural slimming aid, on 3T3-L1 adipocytes.
    Matched MeSH terms: Ficus/chemistry*
  9. Abu Bakar AR, Manaharan T, Merican AF, Mohamad SB
    Nat Prod Res, 2018 Feb;32(4):473-476.
    PMID: 28391727 DOI: 10.1080/14786419.2017.1312393
    Ficus deltoidea leaves extract are known to have good therapeutic properties such as antioxidant, anti-inflammatory and anti-diabetic. We showed that 50% ethanol-water extract of F. deltoidea leaves and its pungent compounds vitexin and isovitexin exhibited significant (p 
    Matched MeSH terms: Ficus/chemistry*
  10. Nurdiana S, Goh YM, Ahmad H, Dom SM, Syimal'ain Azmi N, Noor Mohamad Zin NS, et al.
    BMC Complement Altern Med, 2017 Jun 02;17(1):290.
    PMID: 28576138 DOI: 10.1186/s12906-017-1762-8
    BACKGROUND: The potential application of Ficus deltoidea and vitexin for the management of symptomatologies associated with diabetes mellitus (DM) has gained much attention. However, less firm evidence comes from data to augment our understanding of the role of F. deltoidea and vitexin in protecting pancreatic β-cells. The aim of this study was to assess histological and oxidative stress changes in the pancreas of streptozotocin (STZ)-induced diabetic rats following F. deltoidea extract and vitexin treatment.

    METHODS: F. deltoidea and vitexin was administrated orally to six-weeks STZ-induced diabetic rats over 8 weeks period. The glucose and insulin tolerances were assessed by intraperitoneal glucose (2 g/kg) tolerance test (IPGTT) and intraperitoneal insulin (0.65 U/kg) tolerance test (IPITT), respectively. Subsequently, insulin resistance was assessed by homeostasis assessment model of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI) and the insulin/triglyceride-derived McAuley index. The histological changes in the pancreas were then observed by hematoxylin-eosin (H&E) staining. Further, the pattern of fatty acid composition and infrared (IR) spectra of the serum and pancreas were monitored by gas chromatography (GC) method and Fourier Transform Infrared (FT-IR) spectroscopy.

    RESULTS: F. deltoidea and vitexin increased pancreatic antioxidant enzymes and promoted islet regeneration. However, a significant increase in insulin secretion was observed only in rats treated with F. deltoidea. More importantly, reduction of fasting blood glucose is consistent with reduced FT-IR peaks at 1200-1000 cm-1.

    CONCLUSIONS: These results accentuate that F. deltoidea and vitexin could be a potential agent to attenuate pancreatic oxidative damage and advocate their therapeutic potential for treating DM.

    Matched MeSH terms: Ficus/chemistry*
  11. Haida Z, Syahida A, Ariff SM, Maziah M, Hakiman M
    Sci Rep, 2019 07 02;9(1):9533.
    PMID: 31267036 DOI: 10.1038/s41598-019-46042-w
    A study was conducted to establish in vitro culture conditions for maximum production of biomass and flavonoid content for Ficus deltoidea var. kunstleri, locally named as Mas Cotek, known to have a wide variety of potential beneficial attributes for human health. Size of initial inoculum, cell aggregate and initial pH value have been suggested to influent content of biomass and flavonoid for cell suspension culture in several plant species. In the present study, leaf explants were cultured by cell suspension culture procedures in MSB5 basal medium supplemented with predetermined supplements of 30 g/L sucrose, 2.75 g/L gelrite, 2 mg/L picloram and 1 mg/L kinetin with continuous agitation of 120 rpm in a standard laboratory environment. Establishment of cell suspension culture was accomplished by culturing resulting callus in different initial fresh weight of cells (0.10, 0.25, 0.50, 1.0, and 2.0 g/25 mL of media) using similar basal medium. The results showed that the highest production of biomass (0.65 g/25 mL of media) was recorded from an initial inoculum size of 2.0 g/25 mL media, whereas the highest flavonoid (3.3 mg RE/g DW) was found in 0.5 g/25 mL of media. Cell suspension fractions classified according to their sizes (500-750 µm, 250-500 µm, and <250 µm). Large cell aggregate size (500-750 µm) cultured at pH 5.75 produced the highest cell biomass (0.28 g/25 mL media) and flavonoid content (3.3 mg RE/g DW). The study had established the optimum conditions for the production of total antioxidant and flavonoid content using DPPH and FRAP assays in cell suspension culture of F. deltoidea var. kunstleri.
    Matched MeSH terms: Ficus/chemistry
  12. Mohammad Noor HS, Ismail NH, Kasim N, Mediani A, Mohd Zohdi R, Ali AM, et al.
    Appl Biochem Biotechnol, 2020 Sep;192(1):1-21.
    PMID: 32215848 DOI: 10.1007/s12010-020-03304-y
    Patients are turning into herbs for the management of diabetes, which cause increasing in the demand of plant-based alternative medicines. Ficus deltoidea or locally known as "Mas Cotek" in Malaysia is a famous herbal plant. However, many varieties of F. deltoidea existed with varied antidiabetic activities inspire us to evaluate in vivo antidiabetic activity of the most available varieties of F. deltoidea. Therefore, antihyperglycemic effect of different varieties of F. deltoidea at dose 250 mg/kg was evaluated on streptozotocin-nicotinamide-induced diabetic rats and further assessed their urinary metabolites using proton nuclear magnetic resonance (1H-NMR). The hyperglycemic blood level improved towards normoglycemic state after 30 days of treatment with standardized extracts of F. deltoidea var. trengganuensis, var. kunstleri, and var. intermedia. The extracts also significantly managed the biochemical parameters in diabetic rats. Metabolomics results showed these varieties were able to manage the altered metabolites of diabetic rats by shifting some of the metabolites back to their normal state. This knowledge might be very important in suggesting the use of these herbs in long-term treatment for diabetes. The most potential variety can be recommended, which may be useful for further pharmacological studies and herbal authentication processes.
    Matched MeSH terms: Ficus/chemistry*
  13. Yap VA, Loong BJ, Ting KN, Loh SH, Yong KT, Low YY, et al.
    Phytochemistry, 2015 Jan;109:96-102.
    PMID: 25468714 DOI: 10.1016/j.phytochem.2014.10.032
    Hispidacine, an 8,4'-oxyneolignan featuring incorporation of an unusual 2-hydroxyethylamine moiety at C-7, and hispiloscine, a phenanthroindolizidine alkaloid, were isolated from the stem-bark and leaves of the Malaysian Ficus hispida Linn. Their structures were established by spectroscopic analysis. Hispidacine induced a moderate vasorelaxant activity in rat isolated aorta, while hispiloscine showed appreciable antiproliferative activities against MDA-MB-231, MCF-7, A549, HCT-116 and MRC-5 cell lines.
    Matched MeSH terms: Ficus/chemistry*
  14. Farsi E, Ahmad M, Hor SY, Ahamed MB, Yam MF, Asmawi MZ, et al.
    BMC Complement Altern Med, 2014 07 04;14:220.
    PMID: 24993916 DOI: 10.1186/1472-6882-14-220
    BACKGROUND: Recently, there has been increasing interest in Ficus deltoidea Jack. (Moraceae) due to its chemical composition and the potential health benefits. The present study was undertaken to investigate the effect of extracts of F. deltoidea leaves on diabetes.

    METHODS: The petroleum ether, chloroform and methanol extracts of F. deltoidea were prepared and subjected to standardization using preliminary phytochemical and HPLC analysis. Dose selection was made on the basis of acute oral toxicity study (50-5000 mg/kg b. w.) as per OECD guidelines. Diabetes mellitus was induced with streptozotocin and rats found diabetic were orally administered with the extract (250, 500 and 1000 mg/kg) for 14 days. Levels of blood glucose and insulin were measured in control as well as diabetic rats on 0, 7 and 14th day. In addition, glucose metabolism regulating gene expression was assessed using RT-PCR.

    RESULTS: HPLC analysis revealed that the methanol extract is enriched with C-glycosylflavones particularly, vitexin and isovitexin. In oral glucose tolerance test, oral administration of the methanol extract increased the glucose tolerance. The methanol extract showed significant (P 

    Matched MeSH terms: Ficus/chemistry*
  15. Salleh N, Ahmad VN
    PMID: 24330515 DOI: 10.1186/1472-6882-13-359
    Ficus deltoidea, is a perennial herb that is used to assist labor, firm the uterus post-delivery and to prevent postpartum bleeding. In view of its claimed uterotonic action, the mechanisms underlying plant's effect on uterine contraction were investigated.
    Matched MeSH terms: Ficus/chemistry*
  16. Abu Bakar AR, Ripen AM, Merican AF, Mohamad SB
    Nat Prod Res, 2019 Jun;33(12):1765-1768.
    PMID: 29394875 DOI: 10.1080/14786419.2018.1434631
    Dysregulation of matrix metalloproteinases (MMPs) activity is known in many pathological conditions with which most of the conditions are related to elevate MMPs activities. Ficus deltoidea (FD) is a plant known for its therapeutic properties. In order to evaluate the therapeutic potential of FD leaf extract, we study the enzymatic inhibition properties of FD leaf extract and its major bioactive compounds (vitexin and isovitexin) on a panel of MMPs (MMP-2, MMP-8 and MMP-9) using experimental and computational approaches. FD leaf extract and its major bioactive compounds showed pronounced inhibition activity towards the MMPs tested. Computational docking analysis revealed that vitexin and isovitexin bind to the active site of the three tested MMPs. We also evaluated the cytotoxicity and cell migration inhibition activity of FD leaf extract in the endothelial EA.hy 926 cell line. Conclusively, this study provided additional information on the potential of FD leaf extract for therapeutical application.
    Matched MeSH terms: Ficus/chemistry*
  17. Mawa S, Jantan I, Husain K
    Molecules, 2016 Jan 05;21(1):9.
    PMID: 26742027 DOI: 10.3390/molecules21010009
    Three new triterpenoids; namely 28,28,30-trihydroxylupeol (1); 3,21,21,26-tetrahydroxy-lanostanoic acid (2) and dehydroxybetulinic acid (3) and seven known compounds; i.e., taraxerone (4); taraxerol (5); ethyl palmitate (6); herniarin (7); stigmasterol (8); ursolic acid (9) and acetyl ursolic acid (10) were isolated from the stem of Ficus aurantiaca Griff. The structures of the compounds were established by spectroscopic techniques. The compounds were evaluated for their inhibitory effects on polymorphonuclear leukocyte (PMN) chemotaxis by using the Boyden chamber technique and on human whole blood and neutrophil reactive oxygen species (ROS) production by using a luminol-based chemiluminescence assay. Among the compounds tested, compounds 1-4, 6 and 9 exhibited strong inhibition of PMN migration towards the chemoattractant N-formyl-methionyl-leucyl-phenylalanine (fMLP) with IC50 values of 6.8; 2.8; 2.5; 4.1; 3.7 and 3.6 μM, respectively, comparable to that of the positive control ibuprofen (6.7 μM). Compounds 2-4, 6, 7 and 9 exhibited strong inhibition of ROS production of PMNs with IC50 values of 0.9; 0.9; 1.3; 1.1; 0.5 and 0.8 μM, respectively, which were lower than that of aspirin (9.4 μM). The bioactive compounds might be potential lead molecules for the development of new immunomodulatory agents to modulate the innate immune response of phagocytes.
    Matched MeSH terms: Ficus/chemistry*
  18. Che Ahmad Tantowi NA, Hussin P, Lau SF, Mohamed S
    Menopause, 2017 Sep;24(9):1071-1080.
    PMID: 28640163 DOI: 10.1097/GME.0000000000000882
    OBJECTIVE: Ficus deltoidea Jack (mistletoe fig) is an ornamental plant found in various parts of the world and used as traditional herbal medicine in some countries. This study investigated the potential use of F deltoidea leaf extract to mitigate osteoarthritis (OA) in ovariectomized (estrogen-deficient postmenopausal model) rats and the mechanisms involved. Diclofenac was used for comparison.

    METHODS: Sprague-Dawley female rats (12 weeks old) were divided randomly into five groups (n = 6): healthy; nontreated OA; OA + diclofenac (5 mg/kg); OA + extract (200 mg/kg); and OA + extract (400 mg/kg). Two weeks after bilaterally ovariectomy, OA was induced by intra-articular injection of monosodium iodoacetate into the right knee joints. After 28 days of treatment, the rats were evaluated for knee OA via physical (radiological and histological observations), biochemical, enzyme-linked immunosorbent assay, and gene expression analysis, for inflammation and cartilage degradation biomarkers.

    RESULTS: The osteoarthritic rats treated with the extract, and diclofenac showed significant reduction of cartilage erosion (via radiological, macroscopic, and histological images) compared with untreated osteoarthritic rats. The elevated serum interleukin-1β, prostaglandin E2, and C-telopeptide type II collagen levels in osteoarthritic rats were significantly reduced by F deltoidea leaf extract comparable to diclofenac. The extract significantly down-regulated the interleukin-1β, prostaglandin E2 receptor, and matrix metalloproteinase-1 mRNA expressions in the osteoarthritic cartilages, similar to diclofenac.

    CONCLUSIONS: F deltoidea leaf extract mitigated postmenopausal osteoarthritic joint destruction by inhibiting inflammation and cartilage degradation enzymes, at an effective extract dose equivalent to about 60 mg/kg for humans. The main bioactive compounds are probably the antioxidative flavonoids vitexin and isovitexin.

    Matched MeSH terms: Ficus/chemistry*
  19. Al-Khdhairawi AAQ, Krishnan P, Mai CW, Chung FF, Leong CO, Yong KT, et al.
    J Nat Prod, 2017 10 27;80(10):2734-2740.
    PMID: 28926237 DOI: 10.1021/acs.jnatprod.7b00500
    Tengerensine (1), isolated as a racemate and constituted from a pair of bis-benzopyrroloisoquinoline enantiomers, and tengechlorenine (2), purified as a scalemic mixture and constituted from a pair of chlorinated phenanthroindolizidine enantiomers, were isolated from the leaves of Ficus fistulosa var. tengerensis, along with three other known alkaloids. The structures of 1 and 2 were determined by spectroscopic data interpretation and X-ray diffraction analysis. The enantiomers of 1 were separated by chiral-phase HPLC, and the absolute configurations of (+)-1 and (-)-1 were established via experimental and calculated ECD data. Compound 1 is notable in being a rare unsymmetrical cyclobutane adduct and is the first example of a dimeric benzopyrroloisoquinoline alkaloid, while compound 2 represents the first naturally occurring halogenated phenanthroindolizidine alkaloid. Compound (+)-1 displayed a selective in vitro cytotoxic effect against MDA-MB-468 cells (IC50 7.4 μM), while compound 2 showed pronounced in vitro cytotoxic activity against all three breast cancer cell lines tested (MDA-MB-468, MDA-MB-231, and MCF7; IC50 values of 0.038-0.91 μM).
    Matched MeSH terms: Ficus/chemistry*
  20. Abdel-Rahman RF, Ezzat SM, Ogaly HA, Abd-Elsalam RM, Hessin AF, Fekry MI, et al.
    J Nutr Sci, 2020 01 20;9:e2.
    PMID: 32042410 DOI: 10.1017/jns.2019.40
    Ficus deltoidea var. deltoidea Jack (FD) is a well-known plant used in Malay folklore medicine to lower blood glucose in diabetic patients. For further research of the antihyperglycemic mechanisms, the protein tyrosine phosphatase 1B (PTP1B)-inhibitory effect of FD was analysed both in vitro and in vivo. To optimise a method for FD extraction, water, 50, 70, 80, 90 and 95 % ethanol extracts were prepared and determined for their total phenolic and triterpene contents, and PTP1B-inhibition capacity. Among the tested extracts, 70 % ethanol FD extract showed a significant PTP1B inhibition (92·0 % inhibition at 200 µg/ml) and high phenolic and triterpene contents. A bioassay-guided fractionation of the 70 % ethanol extract led to the isolation of a new triterpene (3β,11β-dihydroxyolean-12-en-23-oic acid; F3) along with six known compounds. In vivo, 4 weeks' administration of 70 % ethanol FD extract (125, 250 and 500 mg/kg/d) to streptozotocin-nicotinamide-induced type 2 diabetic rats reversed the abnormal changes of blood glucose, insulin, total Hb, GLUT2, lipid profile, and oxidative stress in liver and pancreas. Moreover, FD reduced the mRNA expression of the key gluconeogenic enzymes (phosphoenolpyruvate carboxykinase and glucose 6-phosphatase) and restored insulin receptor and GLUT2 encoding gene (Slc2a2) expression. In addition, FD significantly down-regulated the hepatic PTP1B gene expression. These results revealed that FD could potentially improve insulin sensitivity, suppress hepatic glucose output and enhance glucose uptake in type 2 diabetes mellitus through down-regulation of PTP1B. Together, our findings give scientific evidence for the traditional use of FD as an antidiabetic agent.
    Matched MeSH terms: Ficus/chemistry*
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links