Displaying all 15 publications

Abstract:
Sort:
  1. Garza M, Mohan CV, Rahman M, Wieland B, Häsler B
    Prev Vet Med, 2019 Jun 01;167:202-213.
    PMID: 29625785 DOI: 10.1016/j.prevetmed.2018.03.004
    The aquaculture sector in Bangladesh is an important employer and a significant source of foreign exchange. In addition, it contributes significantly to food security due to the role of fish in peoples' diets, the most important source of protein and micronutrients. However, infectious diseases represent an important barrier to sector development due to economic losses and vulnerability of smallholders. The aim of this study was to gain an overview of the impact of infectious diseases in the aquaculture sector, and to assess the usefulness and use of impact studies in decision making for animal health management and biosecurity governance in Bangladesh. A review of scientific and grey literature on infectious disease impact in different aquaculture systems was conducted and their methodologies and findings summarised. Subsequently, interviews with 28 stakeholders from the private and public sector were conducted to enquire about decision-making structures in animal health management. The data were analysed using the framework method to allow the development of themes, by using the information, experiences and opinions inductively obtained from interviewees, deductively through the reviewed literature. Results showed a substantial socio-economic impact of infectious diseases. The numerous stakeholders involved in the decision-making process explained that key barriers to effective aquaculture health management were insufficient resources to investigate and tackle infectious aquatic animal diseases, a dearth of legislation and capacity for disease surveillance, a reliance on reactive response, and a lack of impact and evidence-based approaches for prioritising problem-solving, commonly based on anecdotal evidence. Furthermore, communication among the multiple stakeholders involved was reported to be weak. This complex situation requires a multi-level response, which should span from strengthening the knowledge of farmers and professionals in the field to the improvement of surveillance and diagnostic systems. Improved systems along with evidence on disease impact could inform the prioritisation of diseases and resource allocation for disease control in Bangladesh. Further, this evidence needs to be used to advise decisions to have a true value, for which establishing and strengthening communication pathways and processes is critical to make systematic use of the information and improve animal health management. In the light of future threats to Bangladesh such as climate change, increasing population density and demand for animal source foods, it is crucial to strengthen animal health management systems to reduce livelihoods vulnerability, food insecurity and the likelihood of disease emergence.
    Matched MeSH terms: Fish Diseases/prevention & control*
  2. Noraini O, Sabri MY, Siti-Zahrah A
    J Aquat Anim Health, 2013 Jun;25(2):142-8.
    PMID: 23724958 DOI: 10.1080/08997659.2013.781553
    An initial evaluation of spray vaccination was carried out with 60 hybrid Red Tilapia Oreochromis spp., divided into three groups that consisted of 10 fish per group with duplicates. The formalin-killed cells (FKCs) of Streptococcus agalactiae were administered once to group 1 by spray and once daily for five consecutive days to group 2. Group 3 remained as the untreated control group and was sprayed with normal saline. A booster was given twice to all the groups, once at the second week and again at the fourth week after the first vaccination. After this initial evaluation, a challenge study was conducted with 40 tilapia divided into two groups that consisted of 10 fish per group with duplicates. Group 1 was vaccinated with FKCs of S. agalactiae by a single spray administration while group 2 remained as the untreated control group. A booster was given twice using the same protocol as in the initial evaluation. After 6 weeks, fish from one of the duplicate tanks from each of groups 1 and 2 were challenged with pathogenic S. agalactiae by intraperitoneal (IP) injection, while fish in another tank were challenged through immersion. Based on the observations, serum immunoglobulin M (IgM) levels were significantly higher (P < 0.05) in the challenged fish than in the either the preexposed fish or the control group 1 week after the initial exposure. However, no significant differences (P > 0.05) were noted between challenged groups 1 and 2. In addition, no significant differences (P > 0.05) were observed between the frequencies of exposure. The mucus IgM level, however, remained high after each booster until the end of the 8-week study period. Meanwhile, serum IgM levels decreased after the challenge. A higher percentage of survival was noted for fish challenged through immersion (80%) compared with IP injection (70%). These results suggested that single spray exposure was able to induce IgM, which gave moderate to high protection during the challenge study.
    Matched MeSH terms: Fish Diseases/prevention & control*
  3. Seng LT
    Int J Parasitol, 1997 Oct;27(10):1177-84.
    PMID: 9394188
    Mariculture in Southeast Asia began in the 1970s and expanded rapidly during the 1980s, with the commercial hatchery production of the seabass Lates calcarifer. Other important cultured species were Epinephelus coioides, Epinephelus malabaricus, Lutjanus johni, and Lutjanus argentimaculatus. Intensification in the polyculture of these species and the large-scale international movement of fingerlings or juveniles, as well as the rapid expansion and concentration of fish farms, have caused severe problems resulting from parasitic infections. Infections in maricultured fish are predominantly caused by monoxenous parasites, in particular the capsalid and diplectanid monogeneans. Heteroxenous blood parasites also successfully maintained transmission in the culture system despite their requirement for an intermediate host. Prophylactic chemical treatments helped to reduce parasitic infection but did not eliminate them and once introduced into the floating netcage culture system, these parasites managed to maintain their transmission successfully. Despite the current lack of information regarding the biology of many parasites affecting cultured marine fishes, it nevertheless is possible to develop methodologies to produce an integrated health management system specifically designed to the needs of the mariculture practiced in the Southeast Asian region. This system is important and should include a sequence of prophylaxes, adequate nutrition, sanitation, immunization and an effective system of marketing for farmed fishes.
    Matched MeSH terms: Fish Diseases/prevention & control*
  4. Lee PT, Yamamoto FY, Low CF, Loh JY, Chong CM
    Front Immunol, 2021;12:773193.
    PMID: 34975860 DOI: 10.3389/fimmu.2021.773193
    The gastrointestinal immune system plays an important role in immune homeostasis regulation. It regulates the symbiotic host-microbiome interactions by training and developing the host's innate and adaptive immunity. This interaction plays a vital role in host defence mechanisms and at the same time, balancing the endogenous perturbations of the host immune homeostasis. The fish gastrointestinal immune system is armed with intricate diffused gut-associated lymphoid tissues (GALTs) that establish tolerance toward the enormous commensal gut microbiome while preserving immune responses against the intrusion of enteric pathogens. A comprehensive understanding of the intestinal immune system is a prerequisite for developing an oral vaccine and immunostimulants in aquaculture, particularly in cultured fish species. In this review, we outline the remarkable features of gut immunity and the essential components of gut-associated lymphoid tissue. The mechanistic principles underlying the antigen absorption and uptake through the intestinal epithelial, and the subsequent immune activation through a series of molecular events are reviewed. The emphasis is on the significance of gut immunity in oral administration of immunoprophylactics, and the different potential adjuvants that circumvent intestinal immune tolerance. Comprehension of the intestinal immune system is pivotal for developing effective fish vaccines that can be delivered orally, which is less labour-intensive and could improve fish health and facilitate disease management in the aquaculture industry.
    Matched MeSH terms: Fish Diseases/prevention & control*
  5. Banerjee S, Devaraja TN, Shariff M, Yusoff FM
    J Fish Dis, 2007 Jul;30(7):383-9.
    PMID: 17584435
    Use of antibiotics for the control of bacterial diseases in shrimp culture has caused several adverse impacts to the industry. This has resulted in the search for alternative environment friendly approaches to overcome bacterial infections. This study was conducted to investigate the use of beneficial bacteria as an alternative to antibiotics. Ten pathogenic bacterial species isolated from shrimp, Penaeus monodon, and Artemia cysts were tested for susceptibility to indigenous marine Bacillus subtilis AB65, Bacillus pumilus AB58, Bacillus licheniformis AB69 and compared with oxytetracycline, chloramphenicol, gentamicin and bacitracin, which are common antibiotics used in Asian aquaculture. The Bacillus spp. were isolated from the local marine environment for bioremediation use in shrimp hatcheries and were proven to reduce total ammonium nitrogen. The pathogenic bacterial isolates were 90% susceptible to B. subtilis AB65, 70% susceptible to B. pumilus AB58 and B. licheniformis AB69 and 100% susceptible to oxytetracycline, chloramphenicol and gentamicin but only 40% to bacitracin. Two representative isolates of the vibrio group, Vibrio alginolyticus VaM11 and Vibrio parahaemolyticus VpM1, when tested for competitive exclusion by a common broth method using the marine Bacillus spp., showed decreased viable counts from 10(8) to 10(2) cfu mL(-1). The results suggest that the action of the marine bacteria appears to be significant in protecting the host shrimp against pathogenic bacteria. In addition to the alternative use of antibiotics, the selected marine bacteria had additional bioremediation properties of reducing ammonia.
    Matched MeSH terms: Fish Diseases/prevention & control*
  6. Laith AA, Abdullah MA, Nurhafizah WWI, Hussein HA, Aya J, Effendy AWM, et al.
    Fish Shellfish Immunol, 2019 Jul;90:235-243.
    PMID: 31009810 DOI: 10.1016/j.fsi.2019.04.052
    Streptococcus agalactiae species have been recognized as the main pathogen causing high mortality in fish leading to significant worldwide economical losses to the aquaculture industries. Vaccine development has become a priority in combating multidrug resistance in bacteria; however, there is a lack of commercial live attenuated vaccine (LAV) against S. agalactiae in Malaysia. The aim of this study is to compare two methods using attenuated bacteria as live vaccine and to evaluate the efficacy of selected LAV on the immune responses and resistance of Oreochromis niloticus (tilapia) against S. agalactiae. The LAV derived from S. agalactiae had been weakened using the chemical agent Acriflavine dye (LAV1), whereas the second vaccine was weakened using serial passages of bacteria on broth media (LAV2). Initial immunization was carried out only on day one, given twice-in the morning and evening, for the 42 day period. Serum samples were collected to determine the systemic antibody (IgM) responses and lysozymal (LSZ) activity using ELISA. On day 43 after immunization, the fish were injected intraperitoneally (i.p) with 0.1 mL of S. agalactiae at LD50 = 1.5 × 105 (CFU)/fish. Fish were monitored daily for 10 days. Clinical signs, mortality and the relative percent of survival (RPS) were recorded. Trial 1 results showed a significant increased (P control group (unvaccinated fish). The efficacy of LAV1 was proven effective as determined by the RPS values, LAV1 at 81.58% as compared to LAV2 at 65.79%. Trial 2 of LAV1 and control group were further determined by administering primary and booster doses revealed a RPS value for LAV1 of 82.05%, with the significant enhancement on the immune responses of tilapia as compared to control group. In conclusion, LAV revealed to elevate antibody IgM levels, LSZ activity and provide long-term protection when added to feed. LAV is a low-cost vaccine shown to rapidly increase the immune response of fish and increase survival rates of fish against S. agalactiae infection.
    Matched MeSH terms: Fish Diseases/prevention & control
  7. Ismail MS, Syafiq MR, Siti-Zahrah A, Fahmi S, Shahidan H, Hanan Y, et al.
    Fish Shellfish Immunol, 2017 Jan;60:21-24.
    PMID: 27864157 DOI: 10.1016/j.fsi.2016.11.040
    A tilapia farm experiencing endemic streptococcosis was selected to study the effect of vaccination with a feed-based vaccine on naturally ocurring streptococcosis. A total of 9000 red tilapia, Oreochromis niloticus × Oreochromis mossambicus of 100 ± 20 g were divided into 9 cages. Fish of Group 1 in cages 1, 2 and 3 were not vaccinated. Group 2 in cages 4, 5 and 6 were vaccinated on days 0 and 14 (single booster) while Group 3 in cages 7, 8 and 9 were vaccinated on days 0, 14 and 42 (double booster). Vaccination was done by oral administration of the feed-based bacterin vaccine at 4% bodyweight. Samples of serum for antibody study and the brain, eyes and kidney for bacterial isolation were collected at 14-day intervals. The study was carried out during the critical months between April and June. Following vaccination and booster, there was significant (p fish. In week 4, the isolation rate was 13 ± 5.7% but increased to 18 ± 7.6% in week 8, to 25 ± 10.0% in week 10, to 28 ± 5.8% in week 12 and 25 ± 7.3% in week 14. The average isolation rate was 28 ± 7.2%, 18 ± 7.1% and 13 ± 8.2% of the fish sampled from unvaccinated, single booster and double booster groups, respectively. At the end of the study period, the survival rate was 45.2 ± 2.45% for unvaccinated, 65.3 ± 4.8% for single booster and 75.1 ± 2.1% for double booster groups. Vaccinating fish in endemic farm might not eliminate the disease but was able to significantly improve the survival rate.
    Matched MeSH terms: Fish Diseases/prevention & control*
  8. Shirajum Monir M, Yusoff SM, Mohamad A, Ina-Salwany MY
    J Aquat Anim Health, 2020 06;32(2):65-76.
    PMID: 32331001 DOI: 10.1002/aah.10099
    The production of tilapia Oreochromis spp. is rapidly growing throughout the world, but atypical motile aeromonad septicemia (MAS) is a current threat to the tilapia farming industry. The etiological agent of this disease is usually Aeromonas hydrophila. Mortality rates due to MAS are frequently high, resulting in a devastating negative impact on this industry worldwide; therefore, proper control measures regarding both prevention and treatment are necessary. Although vaccines against MAS for tilapia are available, their effectiveness is entirely dependent on the specific strain of problematic bacteria. Until now, whole-cell inactivated A. hydrophila vaccines for tilapia have exhibited the highest level of protection over live attenuated and recombinant vaccines. Among the various vaccine administration systems, only intraperitoneal (i.p.) injections of the A. hydrophila vaccine into tilapia were found to provide prominent immune protection. Vaccine efficacy was primarily measured by using the i.p. injection challenge model and estimating the relative percent survival of the immunized tilapia. Freund's incomplete adjuvant showed to be the most effective for tilapia MAS vaccines. In this review, multiple factors that directly or indirectly influence the efficacy of MAS vaccines for tilapia (adjuvants, challenge models, immunization doses and duration, and size of vaccinated fish) are discussed.
    Matched MeSH terms: Fish Diseases/prevention & control*
  9. Yaacob EN, De Geest BG, Goethals J, Bajek A, Dierckens K, Bossier P, et al.
    Vet Immunol Immunopathol, 2018 Oct;204:19-27.
    PMID: 30596377 DOI: 10.1016/j.vetimm.2018.09.001
    Vibrio anguillarum causes high mortality in European sea bass (Dicentrarchus labrax) larviculture. In this study, we evaluated if the recombinant sea bass ferritin-H could stimulate the innate immune system of gnotobiotic European sea bass larvae resulting in protection against a V. anguillarum challenge. We also evaluated the effect of a V. anguillarum infection on the transcription of immune-related genes in gnotobiotic European sea bass larvae. Recombinant sea bass ferritin-H was produced, encapsulated in calcium alginate microparticles and orally delivered to sea bass larvae at seven days after hatching. Our results showed V. anguillarum caused an acute infection, resulting in high mortality. The infection significantly upregulated the expression of tlr3, tlr5, cas1, il1β, tnfα, mif, il10, cc1, cxcl8 at 18, 24 and 36 h post infection, but not of the chemokine receptor genes cxcr4 and ccr9. There was no protective effect of ferritin-H. Remarkably, ferritin-H caused significantly higher transcript levels for cxcr4 and ccr9. Sea bass ferritin-H was more likely involved in immune-suppression and results point in the direction of a negative regulation of CXCR4 resulting in inhibition of cell proliferation, differentiation and migration which is detrimental to innate immunity and might explain the non-protective effect of ferritin-H in fish larvae.
    Matched MeSH terms: Fish Diseases/prevention & control
  10. Sheikhlar A, Meng GY, Alimon R, Romano N, Ebrahimi M
    J Aquat Anim Health, 2017 Dec;29(4):225-235.
    PMID: 28937913 DOI: 10.1080/08997659.2017.1374310
    Aqueous and methanol extracts of lemon Citrus limon peel, Euphorbia hirta (aerial parts), and fenugreek Trigonella foenum-graecum seeds were tested for their in vitro antimicrobial activities against the bacterium Aeromonas hydrophila. A swab paper disk method showed that the methanol extract of E. hirta (EHE) had the largest inhibition zone and the lowest minimal inhibitory concentration compared to all other herbal extracts. Based on these results, EHE was included in the diets of Sharptooth Catfish Clarias gariepinus at 0 (control), 2, 5, or 7 g/kg of diet (experiment 1). Each treatment was conducted in triplicate, with 30 fish (mean weight ± SE = 9.4 ± 0.4 g) in each replicate. After 30 d, the growth, feed intake, hepatosomatic index (HSI), and plasma biochemical parameters were measured. With a separate batch of Sharptooth Catfish, the efficacy of the EHE diets in conferring fish resistance to A. hydrophila over 30 d was compared to that of a diet containing oxytetracycline (OTC; experiment 2). Six treatments were conducted in triplicate groups of 30 fish (mean weight ± SE = 9.0 ± 0.3 g); the Control fish were fed the control diet and were not injected with A. hydrophila, while the Control-AH and OTC-AH groups were infected with A. hydrophila and were fed either the control diet or the diet containing OTC at 1 g/199 g. The other three treatments included fish that were injected with A. hydrophila but fed diets with increasing EHE at 2, 5, or 7 g/kg. Experiment 1 showed no change to growth, feeding efficiency, HSI, or plasma biochemical parameters. In experiment 2, however, fish that were fed dietary EHE at 5 g/kg had significantly lower mortality than the Control-AH group, with further resistance observed for fish fed EHE at 7 g/kg. Dietary OTC was more effective than EHE as a prophylactic to A. hydrophila infection in Sharptooth Catfish. Nevertheless, EHE can potentially be a valuable dietary supplement to improve the resistance of Sharptooth Catfish to A. hydrophila infection. Received May 3, 2017; accepted August 24, 2017.
    Matched MeSH terms: Fish Diseases/prevention & control*
  11. Nur-Nazifah M, Sabri MY, Siti-Zahrah A
    Fish Shellfish Immunol, 2014 Mar;37(1):193-200.
    PMID: 24486904 DOI: 10.1016/j.fsi.2014.01.011
    This study was carried out to determine the antibody responses and protective capacity of an inactivated recombinant vaccine expressing the cell wall surface anchor family protein of Streptococcus agalactiae following oral vaccination against streptococcosis in tilapia. Tilapia were vaccinated orally with 10(6) CFU/mL of the recombinant vaccine incorporated in feed (feed-based recombinant vaccine) (vaccinated group or Group 1), 10(6) CFU/mL of pET-32 Ek/LIC vector without cell wall surface anchor family protein (control group or Group 2), 10(6) CFU/mL of formalin-killed cells of S. agalactiae vaccine incorporated in feed was also prepared (feed-based vaccine) (vaccinated group or Group 3), and unvaccinated control group or Group 4 (fed with commercial pellets). During the course of study, serum, mucus and gut lavage fluid were collected to evaluate the antibody levels via enzyme-linked immunosorbent assay (ELISA). The results showed that tilapia immunized with the feed-based recombinant vaccine developed a strong and significantly (P 
    Matched MeSH terms: Fish Diseases/prevention & control*
  12. Sung YY, Roberts RJ, Bossier P
    J Fish Dis, 2012 Aug;35(8):563-8.
    PMID: 22724455 DOI: 10.1111/j.1365-2761.2012.01397.x
    Exposure to TEX-OE®, a patented extract of the prickly pear cactus (Opuntia ficus indica) containing chaperone-stimulating factor, was shown to protect common carp, Cyprinus carpio L., fingerlings against acute ammonia stress. Survival was enhanced twofold from 50% to 95% after exposure to 5.92 mg L(-1) NH(3) , a level determined in the ammonia challenge bioassay as the 1-h LD50 concentration for this species. Survival of TEX-OE®-pre-exposed fish was enhanced by 20% over non-exposed controls during lethal ammonia challenge (14.21 mg L(-1)  NH(3) ). Increase in the levels of gill and muscle Hsp70 was evident in TEX-OE®-pre-exposed fish but not in the unexposed controls, indicating that application of TEX-OE® accelerated carp endogenous Hsp70 synthesis during ammonia perturbation. Protection against ammonia was correlated with Hsp70 accretion.
    Matched MeSH terms: Fish Diseases/prevention & control*
  13. Anuradha K, Foo HL, Mariana NS, Loh TC, Yusoff K, Hassan MD, et al.
    J Appl Microbiol, 2010 Nov;109(5):1632-42.
    PMID: 20602654 DOI: 10.1111/j.1365-2672.2010.04789.x
    To evaluate a live recombinant Lactococcus lactis vaccine expressing aerolysin genes D1 (Lac-D1ae) and/or D4 (Lac-D4ae) in protection against Aeromonas hydrophila in tilapia (Oreochromis niloticus).
    Matched MeSH terms: Fish Diseases/prevention & control*
  14. Monir MS, Yusoff SBM, Zulperi ZBM, Hassim HBA, Mohamad A, Ngoo MSBMH, et al.
    BMC Vet Res, 2020 Jul 02;16(1):226.
    PMID: 32615969 DOI: 10.1186/s12917-020-02443-y
    BACKGROUND: Streptococcosis and Motile Aeromonad Septicemia (MAS) are important diseases of tilapia, Oreochromis spp. and causes huge economic losses in aquaculture globally. The feed-based vaccination may be an alternative to minimize major infectious diseases in tilapia. Thus, this study aims to evaluate the haemato-immunological responses and effectiveness of a newly developed feed-based killed bivalent vaccine against Streptococcus iniae and Aeromonas hydrophila in hybrid red tilapia. A total of 495 hybrid red tilapia of 61.23 ± 4.95 g were distributed into 5 groups (each with triplicate). The fish were immunized orally through bivalent (combined S. iniae and A. hydrophila) spray vaccine (BS group), bivalent formulate vaccine (BF group), monovalent S. iniae vaccine (MS group), monovalent A. hydrophila vaccine (MA group) and unvaccinated as a control group. The vaccine was orally administered on days 0, 14 and 42 applied feed-based bacterin at 5% body weight. The blood and spleen samples were collected from all groups on 7, 21 and 49 days post-vaccination, and also 96 h post-infection to assess their haemato-immune responses.

    RESULTS: Compared with the unvaccinated group, leukocyte, lymphocytes, monocytes, granulocytes counts in vaccinated groups were significantly (P fish immunization in the aquaculture industry.

    Matched MeSH terms: Fish Diseases/prevention & control*
  15. Low CF, Rozaini MZH, Musa N, Syarul Nataqain B
    J Fish Dis, 2017 Oct;40(10):1267-1277.
    PMID: 28252175 DOI: 10.1111/jfd.12610
    The approaches of transcriptomic and proteomic have been widely used to study host-pathogen interactions in fish diseases, and this is comparable to the recently emerging application of metabolomic in elucidating disease-resistant mechanisms in fish that gives new insight into potential therapeutic strategies to improve fish health. Metabolomic is defined as the large-scale study of all metabolites within an organism and represents the frontline in the 'omics' approaches, providing direct information on the metabolic responses and perturbations in metabolic pathways. In this review, the current research in infectious fish diseases using metabolomic approach will be summarized. The metabolomic approach in economically important fish infected with viruses, bacteria and nematodes will also be discussed. The potential of the metabolomic approach for management of these infectious diseases as well as the challenges and the limitations of metabolomic in fish disease studies will be explored. Current review highlights the impacts of metabolomic studies in infectious fish diseases, which proposed the potential of new therapeutic strategies to enhance disease resistance in fish.
    Matched MeSH terms: Fish Diseases/prevention & control*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links