Displaying publications 1 - 20 of 137 in total

Abstract:
Sort:
  1. Rahmani M, Leng KW, Ismail HB, Hin TY, Sukari MA, Ali AM, et al.
    Nat Prod Res, 2004 Feb;18(1):85-8.
    PMID: 14974620
    A new flavonoid, dihydroglychalcone-A, was isolated from the leaves extract of Glycosmis chlorosperma in addition to two known sulphur-containing amides, dambullin and gerambullin. The structure of the new compound was assigned as 2'-hydroxy-4,6'-dimethoxy-3',4'-(2",2"-dimethylpyrano)dihydrochalcone. The extract of the leaves was also found to exhibit antimicrobial and cytotoxic activities.
    Matched MeSH terms: Flavonoids/chemistry*
  2. Ahmat N, Wibowo A, Mohamad SA, Low AL, Sufian AS, Yusof MI, et al.
    J Asian Nat Prod Res, 2014;16(11):1099-107.
    PMID: 25034352 DOI: 10.1080/10286020.2014.938059
    A new tetramer oligostilbenoid possessing tetrahydrofuran ring, malaysianol C (1), was isolated from the acetone extract of the stem bark of Dryobalanops lanceolata, together with four known oligostilbenoids nepalensinol E (2), ϵ-viniferin (3), laevifonol (4), and ampelopsin F (5). The structures of isolated compounds were elucidated on the basis of spectral evidence. The antibacterial activity of the isolated compounds was evaluated using resazurin microtitre-plate assay, whereas the cytotoxic activity was tested using MTT assay. The plausible biogenetic routes of the isolated compounds are also discussed.
    Matched MeSH terms: Flavonoids/chemistry
  3. Ghasemzadeh A, Jaafar HZE, Baghdadi A, Tayebi-Meigooni A
    Molecules, 2018 Jul 25;23(8).
    PMID: 30044450 DOI: 10.3390/molecules23081852
    Since α-mangostin in mangosteen fruits was reported to be the main compound able to provide natural antioxidants, the microwave-assisted extraction process to obtain high-quality α-mangostin from mangosteen pericarp (Garcinia mangostana L.) was optimized using a central composite design and response surface methodology. The parameters examined included extraction time, microwave power, and solvent percentage. The antioxidant and antimicrobial activity of optimized and non-optimized extracts was evaluated. Ethyl acetate as a green solvent exhibited the highest concentration of α-mangostin, followed by dichloromethane, ethanol, and water. The highest α-mangostin concentration in mangosteen pericarp of 121.01 mg/g dry matter (DM) was predicted at 3.16 min, 189.20 W, and 72.40% (v/v). The verification of experimental results under these optimized conditions showed that the α-mangostin value for the mangosteen pericarp was 120.68 mg/g DM. The predicted models were successfully developed to extract α-mangostin from the mangosteen pericarp. No significant differences were observed between the predicted and the experimental α-mangostin values, indicating that the developed models are accurate. The analysis of the extracts for secondary metabolites showed that the total phenolic content (TPC) and total flavonoid content (TFC) increased significantly in the optimized extracts (OE) compared to the non-optimized extracts (NOE). Additionally, trans-ferulic acid and catechin were abundant among the compounds identified. In addition, the optimized extract of mangosteen pericarp with its higher α-mangostin and secondary metabolite concentrations exhibited higher antioxidant activities with half maximal inhibitory concentration (IC50) values of 20.64 µg/mL compared to those of the NOE (28.50 µg/mL). The OE exhibited the highest antibacterial activity, particularly against Gram-positive bacteria. In this study, the microwave-assisted extraction process of α-mangostin from mangosteen pericarp was successfully optimized, indicating the accuracy of the models developed, which will be usable in a larger-scale extraction process.
    Matched MeSH terms: Flavonoids/chemistry
  4. Nallappan D, Chua KH, Ong KC, Chong CW, Teh CSJ, Palanisamy UD, et al.
    Food Funct, 2021 Jul 05;12(13):5876-5891.
    PMID: 34019055 DOI: 10.1039/d1fo00539a
    Obesity is a driving factor in the onset of metabolic disorders. This study aims to investigate the effects of the myricetin derivative-rich fraction (MD) from Syzygium malaccense leaf extract on high-fat diet (HFD)-induced obesity and its associated complications and its influence on uncoupling protein-1 (UCP-1) and gut microbiota in C57BL/6J mice. Mice were randomly assigned into four groups (n = 6) and given a normal diet (ND) or high-fat diet (HFD) for 10 weeks to induce obesity. The HFD groups (continued with HFD) were administered 50 mg kg-1 MD (treatment), 50 mg kg-1 metformin (positive control) and normal saline (HFD and ND controls) daily for four weeks via oral gavage. The ten-week HFD-feeding resulted in hyperglycemia and elevated urinary oxidative indices. The subsequent MD administration caused significant weight reduction without appetite suppression and amelioration of insulin resistance, steatosis and dyslipidemia. Besides, MD significantly reduced lipid hydroperoxides and protein carbonyls in tissue homogenates and urine and elevated Trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) and reduced glutathione (GSH) and thus, alleviated oxidative stress. The weight reduction was correlated with downregulation of inflammatory markers and the increased UCP-1 level, suggesting weight loss plausibly through thermogenesis. The Akkermansia genus (reflects improved metabolic status) in the HFD50 group was more abundant than that in the HFD group while the non-enzymatic antioxidant markers were strongly associated with UCP-1. In conclusion, MD ameliorates obesity and its related complications possibly via the upregulation of UCP-1 and increased abundance of Akkermansia genus and is promising as a therapeutic agent in the treatment of obesity and its associated metabolic disorders.
    Matched MeSH terms: Flavonoids/chemistry
  5. Sirat HM, Susanti D, Ahmad F, Takayama H, Kitajima M
    J Nat Med, 2010 Oct;64(4):492-5.
    PMID: 20582481 DOI: 10.1007/s11418-010-0431-8
    Successive extraction of the dried leaves of Melastoma malabathricum, followed by purification using repeated chromatographic techniques, yielded six compounds, including two amides, auranamide and patriscabratine, a triterpene, alpha-amyrin, and three flavonoids, quercitrin, quercetin and kaempferol-3-O-(2'',6''-di-O-p-trans-coumaroyl)-beta-glucoside. Their structures were elucidated by spectroscopic means and also by direct comparison of their spectroscopic data with respective published data. These three phenolic constituents were found to be active as free radical scavengers, with quercetin being the strongest radical scavenger, having an IC(50) value of 0.69 microM in the UV method. Quercitrin and kaempferol-3-O-(2'',6''-di-O-p-trans-coumaroyl)-beta-glucoside showed moderate radical scavenging, with IC(50) values of 74.1 and 108.8 microM, respectively.
    Matched MeSH terms: Flavonoids/chemistry
  6. Tieng FYF, Latifah SY, Md Hashim NF, Khaza'ai H, Ahmat N, Gopalsamy B, et al.
    Molecules, 2019 Jul 18;24(14).
    PMID: 31323836 DOI: 10.3390/molecules24142619
    Breast cancer is the most common and the second leading cause of cancer-related deaths in women. It has two distinctive hallmarks: rapid abnormal growth and the ability to invade and metastasize. During metastasis, cancer cells are thought to form actin-rich protrusions, called invadopodia, which degrade the extracellular matrix. Current breast cancer treatments, particularly chemotherapy, comes with adverse effects like immunosuppression, resistance development and secondary tumour formation. Hence, naturally-occurring molecules claimed to be less toxic are being studied as new drug candidates. Ampelopsin E, a natural oligostilbene extracted from Dryobalanops species, has exhibited various pharmacological properties, including anticancer and anti-inflammatory activities. However, there is yet no scientific evidence of the effects of ampelopsin E towards metastasis. Scratch assay, transwell migration and invasion assays, invadopodia and gelatin degradation assays, and ELISA were used to determine the effects of ampelopsin E towards the invasiveness of MDA-MB-231 cells. Strikingly in this study, ampelopsin E was able to halt migration, transmigration and invasion in MDA-MB-231 cells by reducing formation of invadopodia and its degradation capability through significant reduction (p < 0.05) in expression levels of PDGF, MMP2, MMP9 and MMP14. In conclusion, ampelopsin E reduced the invasiveness of MDA-MB-231 cells and was proven to be a potential alternative in treating TNBC.
    Matched MeSH terms: Flavonoids/chemistry
  7. Chelyn JL, Omar MH, Mohd Yousof NS, Ranggasamy R, Wasiman MI, Ismail Z
    ScientificWorldJournal, 2014;2014:724267.
    PMID: 25405231 DOI: 10.1155/2014/724267
    Clinacanthus nutans (family Acanthaceae) has been used for the treatment of inflammation and herpes viral infection. Currently, there has not been any report on the qualitative and quantitative determination of the chemical markers in the leaves of C. nutans. The C-glycosidic flavones such as shaftoside, isoorientin, orientin, isovitexin, and vitexin have been found to be major flavonoids in the leaves of this plant. Therefore, we had developed a two-step method using thin-layer chromatography (TLC) and high pressure liquid chromatography (HPLC) for the rapid identification and quantification of the flavones C-glycosides in C. nutans leaves. The TLC separation of the chemical markers was achieved on silica gel 60 plate using ethyl acetate : formic acid : acetic acid : water (100 : 11 : 11 : 27 v/v/v/v) as the mobile phase. HPLC method was optimized and validated for the quantification of shaftoside, orientin, isovitexin, and vitexin and was shown to be linear in concentration range tested (0.4-200 μg/mL, r(2) ≥ 0.996), precise (RSD ≤ 4.54%), and accurate (95-105%). The concentration of shaftoside, orientin, vitexin, and isovitexin in C. nutans leave samples was 2.55-17.43, 0.00-0.86, 0.00-2.01, and 0.00-0.91 mmol/g, respectively.
    Matched MeSH terms: Flavonoids/chemistry
  8. Djebli N, Mustafa MR, Keskin M, Kolayli S
    Comb Chem High Throughput Screen, 2021;24(10):1664-1670.
    PMID: 33208062 DOI: 10.2174/1386207323999201117114008
    AIM AND OBJECTIVE: This study aimed at investigating the gastro-protective effects of Algerian Sahara (Sidr) honey from Apis mellifera intermissa against HCl/Ethanol-induced gastric ulcers in rats.

    MATERIALS AND METHODS: Total phenolic content, antioxidant activity and phenolic compounds were determined. Then, three groups of rats (control, HCl/ Ethanol-induced ulcer, and orally administered honey) were used for the determination of gastro-protective effect of Sidr honey.

    RESULTS: Total phenolic content, total flavonoid content, and DPPH activity of the honey sample were determined as 47.35±3.35 mg GAE/ 100 g, 2.13±0.17 mg QE/ 100 g, and 229.24±0.02 mg/mL, respectively. Oral pretreatment of rats with honey (1.2 g/Kg body weight orally at an interval of 2 days) protected gastric mucosa against HCl/Ethanol-induced damage by decreasing ulcer score, the volume and acidity of gastric juice and increasing pH.

    CONCLUSION: These results were confirmed by the histological assessment, which demonstrated a significant gastro-protective activity of Saharian (Sidr) honey against HCl/Ethanol-induced stomach ulcer. Plasma tumor necrosis factor-α, IL-6 and PGE2 were also measured. Sahara honey significantly decreased the plasma TNF-α, PGE2, and IL-6 concentrations.

    Matched MeSH terms: Flavonoids/chemistry
  9. Yazawa K, Kurokawa M, Obuchi M, Li Y, Yamada R, Sadanari H, et al.
    Antivir Chem Chemother, 2011;22(1):1-11.
    PMID: 21860068 DOI: 10.3851/IMP1782
    We examined the anti-influenza virus activity of tricin, 4',5,7-trihydroxy-3',5'-dimethoxyflavone, against five viruses: A/Solomon islands/3/2006 (H1N1), A/Hiroshima/52/2005 (H3N2), A/California/07/2009 (H1N1pdm), A/Narita/1/2009 (H1N1pdm) and B/Malaysia/2506/2004 strains in vitro and against A/PR/8/34 virus in vivo.
    Matched MeSH terms: Flavonoids/chemistry*
  10. Samad MA, Hashim SH, Simarani K, Yaacob JS
    Molecules, 2016 Mar 26;21(4):419.
    PMID: 27023514 DOI: 10.3390/molecules21040419
    Phoenix dactylifera or date palm fruits are reported to contain natural compounds that exhibit antioxidant and antibacterial properties. This research aimed to study the effect of fruit chilling at 4 °C for 8 weeks, extract storage at -20 °C for 5 weeks, and extraction solvents (methanol or acetone) on total phenolic content (TPC), antioxidant activity and antibacterial properties of Saudi Arabian P. dactylifera cv Mabroom, Safawi and Ajwa, as well as Iranian P. dactylifera cv Mariami. The storage stability of total anthocyanin content (TAC) was also evaluated, before and after storing the extracts at -20 °C and 4 °C respectively, for 5 weeks. Mariami had the highest TAC (3.18 ± 1.40 mg cyd 3-glu/100 g DW) while Mabroom had the lowest TAC (0.54 ± 0.15 mg cyd 3-glu/100 g DW). The TAC of all extracts increased after storage. The chilling of date palm fruits for 8 weeks prior to solvent extraction elevated the TPC of all date fruit extracts, except for methanolic extracts of Mabroom and Mariami. All IC50 values of all cultivars decreased after the fruit chilling treatment. Methanol was a better solvent compared to acetone for the extraction of phenolic compounds in dates. The TPC of all cultivars extracts decreased after 5 weeks of extract storage. IC50 values of all cultivars extracts increased after extract storage except for the methanolic extracts of Safawi and Ajwa. Different cultivars exhibited different antibacterial properties. Only the methanolic extract of Ajwa exhibited antibacterial activity against all four bacteria tested: Staphylococcus aureus, Bacillus cereus, Serratia marcescens and Escherichia coli. These results could be useful to the nutraceutical and pharmaceutical industries in the development of natural compound-based products.
    Matched MeSH terms: Flavonoids/chemistry
  11. Misbah H, Aziz AA, Aminudin N
    PMID: 23718315 DOI: 10.1186/1472-6882-13-118
    Diabetes is a serious metabolic disorder affecting the metabolism of carbohydrate, protein and fat. A number of studies have shown that diabetes mellitus is associated with oxidative stress, leading to an increased production of reactive oxygen species. Ficus deltoidea is traditionally used in Malaysia for regulating blood sugar, blood pressure and cholesterol levels. The use of F. deltoidea as an alternative medicinal herb is increasingly gaining popularity with the sale of F. deltoidea tea bags and capsules in the local market. The present study was undertaken to investigate the antidiabetic and antioxidant activities of the fruits from different varieties of F. deltoidea, employing in vitro methods.
    Matched MeSH terms: Flavonoids/chemistry
  12. Salhi N, Mohammed Saghir SA, Terzi V, Brahmi I, Ghedairi N, Bissati S
    Biomed Res Int, 2017;2017:7526291.
    PMID: 29226147 DOI: 10.1155/2017/7526291
    Aim: This study investigated the antifungal properties of aqueous extracts obtained from indigenous plants that grow spontaneously in the Northern Sahara of Algeria. The activities of these plants in controlling two fungal species that belong to Fusarium genus were evaluated in an in vitro assay.

    Materials and Methods: Fresh aerial parts of four plant species (Artemisia herba alba, Cotula cinerea, Asphodelus tenuifolius, and Euphorbia guyoniana) were collected for the preparation of aqueous extracts. Two levels of dilution (10% and 20%) of the pure extracts were evaluated against Fusarium graminearum and Fusarium sporotrichioides.

    Results: The results of this study revealed that the A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana aqueous extracts are effective at both concentrations of 10% and 20% for the Fusarium mycelia growth inhibition. In particular, A. tenuifolius extract is effective against F. graminearum, whereas F. sporotrichioides mycelium growth is strongly affected by the E. guyoniana 20% extract. The phytochemical characterization of the compositions of the aqueous extracts has revealed that the presence of some chemical compounds (tannins, flavonoids, saponins, steroids, and alkaloids) is likely to be responsible for the antifungal activities sought.

    Conclusion: The antifungal properties of A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana make these plants of potential interest for the control of fungi affecting both wheat yield and safety.

    Matched MeSH terms: Flavonoids/chemistry
  13. Lichius JJ, Thoison O, Montagnac A, Païs M, Guéritte-Voegelein F, Sévenet T, et al.
    J Nat Prod, 1994 Jul;57(7):1012-6.
    PMID: 7964782
    Bioassay-guided fractionation of the extracts of Zieridium pseudobtusifolium and Acronychia porteri led to the isolation of 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone [1], which showed activity against (KB) human nasopharyngeal carcinoma cells (IC50 0.04 micrograms/ml) and inhibited tubulin assembly into microtubules (IC50 12 microM). Two other known flavonols, digicitrin [2] and 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone [5], were also isolated together with three new ones, 3-O-demethyldigicitrin [3], 3,5,3'-trihydroxy-6,7,8,4'-tetramethoxyflavone [4], and 3,5-dihydroxy-6,7,8,3',4'-pentamethoxyflavone [6]. All of these flavonols showed cytotoxic activity against KB cells.
    Matched MeSH terms: Flavonoids/chemistry
  14. Khorasani Esmaeili A, Mat Taha R, Mohajer S, Banisalam B
    Biomed Res Int, 2015;2015:643285.
    PMID: 26064936 DOI: 10.1155/2015/643285
    In the present study the extracts of in vivo and in vitro grown plants as well as callus tissue of red clover were tested for their antioxidant activities, using different extraction solvent and different antioxidant assays. The total flavonoid and phenolic contents as well as extraction yield of the extracts were also investigated to determine their correlation with the antioxidant activity of the extracts. Among all the tested extracts the highest amounts of total phenolic and total flavonoids content were found in methanol extract of in vivo grown plants. The antioxidant activity of tested samples followed the order in vivo plant extract > callus extract > in vitro extract. The highest reducing power, 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging, and chelating power were found in methanol extracts of in vivo grown red clover, while the chloroform fraction of in vivo grown plants showed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, superoxide anion radical scavenging and hydrogen peroxide scavenging compared to the other tested extracts. A significant correlation was found between the antioxidant activity of extracts and their total phenolic and total flavonoid content. According to the findings, the extract of in vitro culture of red clover especially the callus tissue possesses a comparable antioxidant activity to the in vivo cultured plants' extract.
    Matched MeSH terms: Flavonoids/chemistry
  15. Ghasemzadeh A, Jaafar HZ, Rahmat A
    Molecules, 2010 Jun 14;15(6):4324-33.
    PMID: 20657444 DOI: 10.3390/molecules15064324
    Ginger (Zingiber officinale Roscoe) is a well known and widely used herb, especially in Asia, which contains several interesting bioactive constituents and possesses health promoting properties. In this study, the antioxidant activities of methanol extracts from the leaves, stems and rhizomes of two Zingiber officinale varieties (Halia Bentong and Halia Bara) were assessed in an effort to compare and validate the medicinal potential of the subterranean part of the young ginger. The antioxidant activity and phenolic contents of the leaves as determined by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay and the total amounts of phenolics and flavonoids were higher than those of the rhizomes and stems. On the other hand, the ferric reducing/antioxidant potential (FRAP) activity of the rhizomes was higher than that of the leaves. At low concentration the values of the leaves' inhibition activity in both varieties were significantly higher than or comparable to those of the young rhizomes. Halia Bara had higher antioxidant activities as well as total contents of phenolic and flavonoid in comparison with Halia Bentong. This study validated the medicinal potential of the leaves and young rhizome of Zingiber officinale (Halia Bara) and the positive relationship between total phenolics content and antioxidant activities in Zingiber officinale.
    Matched MeSH terms: Flavonoids/chemistry*
  16. Torey A, Sasidharan S, Latha LY, Sudhakaran S, Ramanathan S
    Pharm Biol, 2010 Oct;48(10):1119-23.
    PMID: 20738154 DOI: 10.3109/13880200903490505
    To investigate the in vitro antioxidant activity of methanol extracts of Ixora coccinea L. (Rubiaceae) flower, leaf and stem.
    Matched MeSH terms: Flavonoids/chemistry*
  17. Granato D, Shahidi F, Wrolstad R, Kilmartin P, Melton LD, Hidalgo FJ, et al.
    Food Chem, 2018 Oct 30;264:471-475.
    PMID: 29853403 DOI: 10.1016/j.foodchem.2018.04.012
    As many studies are exploring the association between ingestion of bioactive compounds and decreased risk of non-communicable diseases, the scientific community continues to show considerable interest in these compounds. In addition, as many non-nutrients with putative health benefits are reducing agents, hydrogen donors, singlet oxygen quenchers or metal chelators, measurement of antioxidant activity using in vitro assays has become very popular over recent decades. Measuring concentrations of total phenolics, flavonoids, and other compound (sub)classes using UV/Vis spectrophotometry offers a rapid chemical index, but chromatographic techniques are necessary to establish structure-activity. For bioactive purposes, in vivo models are required or, at the very least, methods that employ distinct mechanisms of action (i.e., single electron transfer, transition metal chelating ability, and hydrogen atom transfer). In this regard, better understanding and application of in vitro screening methods should help design of future research studies on 'bioactive compounds'.
    Matched MeSH terms: Flavonoids/chemistry
  18. Sarian MN, Ahmed QU, Mat So'ad SZ, Alhassan AM, Murugesu S, Perumal V, et al.
    Biomed Res Int, 2017;2017:8386065.
    PMID: 29318154 DOI: 10.1155/2017/8386065
    The best described pharmacological property of flavonoids is their capacity to act as potent antioxidant that has been reported to play an important role in the alleviation of diabetes mellitus. Flavonoids biochemical properties are structure dependent; however, they are yet to be thoroughly understood. Hence, the main aim of this work was to investigate the antioxidant and antidiabetic properties of some structurally related flavonoids to identify key positions responsible, their correlation, and the effect of methylation and acetylation on the same properties. Antioxidant potential was evaluated through dot blot, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ABTS+ radical scavenging, ferric reducing antioxidant power (FRAP), and xanthine oxidase inhibitory (XOI) assays. Antidiabetic effect was investigated through α-glucosidase and dipeptidyl peptidase-4 (DPP-4) assays. Results showed that the total number and the configuration of hydroxyl groups played an important role in regulating antioxidant and antidiabetic properties in scavenging DPPH radical, ABTS+ radical, and FRAP assays and improved both α-glucosidase and DPP-4 activities. Presence of C-2-C-3 double bond and C-4 ketonic group are two essential structural features in the bioactivity of flavonoids especially for antidiabetic property. Methylation and acetylation of hydroxyl groups were found to diminish the in vitro antioxidant and antidiabetic properties of the flavonoids.
    Matched MeSH terms: Flavonoids/chemistry*
  19. Taheri S, Abdullah TL, Karimi E, Oskoueian E, Ebrahimi M
    Int J Mol Sci, 2014;15(7):13077-90.
    PMID: 25056545 DOI: 10.3390/ijms150713077
    The present study was conducted in order to assess the effect of various doses of acute gamma irradiation (0, 10, 15, and 20 Gy) on the improvement of bioactive compounds and their antioxidant properties of Curcuma alismatifolia var. Sweet pink. The high performance liquid chromatography (HPLC) and gas chromatography (GC) analysis uncovered that various types of phenolic, flavonoid compounds, and fatty acids gradually altered in response to radiation doses. On the other hand, antioxidant activities determined by 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), ferric reduction, antioxidant power (FRAP), and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging assay showed a higher irradiation level significantly increased the antioxidant properties. This study revealed an efficient effect of varying levels of gamma radiation, based on the pharmaceutical demand to enhance the accumulation and distribution of bioactive compounds such as phenolic and flavonoid compounds, fatty acids, as well as their antioxidant activities in the leaves of C. alismatifolia var. Sweet pink.
    Matched MeSH terms: Flavonoids/chemistry
  20. Karimi E, Ghorbani Nohooji M, Habibi M, Ebrahimi M, Mehrafarin A, Khalighi-Sigaroodi F
    Nat Prod Res, 2018 Aug;32(16):1991-1995.
    PMID: 28774179 DOI: 10.1080/14786419.2017.1359171
    The antioxidant activities of crude extract fractions using Hexane, Chloroform, Ethyl Acetate, Butanol and Water of Clematis orientalis and Clematis ispahanica were investigated. 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay and the ferric reducing/antioxidant potential (FRAP) were used to evaluate the antioxidant capacity. The total phenolics were found to be 4.37-9.38 and 1.32-11.37 mg gallic acid equivalents (GAE)/g in different fractions for C. orientalis and C. ispahanica, respectively. The ethyl acetate fraction of C. orientalis and chloroform fraction of C. ispahanica showed the highest DPPH and FRAP activities at a concentration of 300 μg/mL. The predominant phenolic compounds identified by HPLC in C. orientalis were Resorcinol (603.5 μg/g DW) in chloroform fraction and Ellagic acid (811.7 μg/g DW) in chloroform fraction of C. ispahanica.
    Matched MeSH terms: Flavonoids/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links