Displaying publications 1 - 20 of 70 in total

  1. Zainal SFFS, Aziz HA, Omar FM, Alazaiza MYD
    Chemosphere, 2021 Dec;285:131484.
    PMID: 34261011 DOI: 10.1016/j.chemosphere.2021.131484
    Stabilised leachate usually contains lower concentration of organic compounds than younger leachate; it has low biodegradability and generally unsuitable for biological treatment. The effectiveness of tetravalent metal salts in a coagulation-flocculation (C-F) process is still inclusive. Application of natural coagulants as an alternative to the chemical could reduce chemical usage, is less costly, and environmentally friendly. Hence, the objective of the current research is to examine the possibility of reducing the amount of Tin (IV) chloride (SnCl4) as a primary coagulant by adding Jatropha curcas (JC) as a flocculant as a sole treatment through the C-F process in treating concentrated suspended solids (SS) (547 mg/L), colour (19,705 Pt-Co) and chemical oxygen demand (COD) (4202 mg/L) in stabilised landfill leachate. The work also aims to evaluate the sludge properties after treatment. Functional groups, such as carboxylic acids, hydroxyl and amine/amino compounds (protein contents), were detected in the JC seed to facilitate the C-F process by neutralising the charge pollutant in water and cause the possibility of hydrogen bonding interaction between molecules. The combination of JC seed (0.9 g/L) as a flocculant reduced the dosage of SnCl4 as a coagulant from 11.1 g/L to 8.5 g/L with removals of 99.78%, 98.53% and 74.29% for SS, colour and COD, respectively. The presence of JC improved the sludge property with good morphology; the particles were in a rectangular shape, had clumps and strong agglomeration. These properties of sludge proved that JC seed could enhance the adsorption and bridging mechanism in the C-F procedure.
    Matched MeSH terms: Flocculation
  2. Hanif MA, Ibrahim N, Dahalan FA, Md Ali UF, Hasan M, Jalil AA
    Sci Total Environ, 2022 Mar 01;810:152115.
    PMID: 34896138 DOI: 10.1016/j.scitotenv.2021.152115
    The presence of microplastics (MP) and nanoplastics (NP) in the environment poses significant hazards towards microorganisms, humans, animals and plants. This paper is focused on recent literature studies and patents discussing the removal process of these plastic pollutants. Microplastics and nanoplastics can be quantified by counting, weighing, absorbance and turbidity and can be further analyzed using scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, surface-enhanced Raman spectroscopy and Raman tweezers. Mitigation methods reported are categorized depending on the removal characteristics: (i) Filtration and separation method: Filtration and separation, electrospun nanofiber membrane, constructed wetlands; (ii) Capture and surface attachment method: coagulation, flocculation and sedimentation (CFS), electrocoagulation, adsorption, magnetization, micromachines, superhydrophobic materials and microorganism aggregation; and (iii) Degradation method: photocatalytic degradation, microorganism degradation and thermal degradation; where removal efficiency between 58 and 100% were reported. As these methods are significantly distinctive, the parameters which affect the MP/NP removal performance e.g., pH, type of plastics, presence of interfering chemicals or ions, surface charges etc. are also discussed. 42 granted international patents related to microplastics and nanoplastics removal are also reviewed where the majority of these patents are focused on separation or filtration devices. These devices are efficient for microplastics up to 20 μm but may be ineffective for nanoplastics or fibrous plastics. Several patents were found to focus on methods similar to literature studies e.g., magnetization, CFS, biofilm and microorganism aggregation; with the addition of another method: thermal degradation.
    Matched MeSH terms: Flocculation
  3. Aziz A, Agamuthu P, Fauziah SH
    Waste Manag Res, 2018 Oct;36(10):975-984.
    PMID: 30058954 DOI: 10.1177/0734242X18790360
    Landfill leachate contain persistent organic pollutants (POPs), namely, bisphenol A (BPA) and 2,4-Di-tert-butylphenol, which exceed the permissible limits. Thus, such landfill leachate must be treated before it is released into natural water courses. This article reports on investigations about the removal efficiency of POPs such as BPA and 2,4-Di-tert-butylphenol from leachate using locust bean gum (LBG) in comparison with alum. The vital experimental variables (pH, coagulant dosage and stirring speed) were optimised by applying response surface methodology equipped with the Box-Behnken design to reduce the POPs from leachate. An empirical quadratic polynomial model could accurately model the surface response with R2 values of 0.928 and 0.954 to reduce BPA and 2,4-Di-tert-butylphenol, respectively. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were performed on treated flocs for further understanding. FTIR analysis revealed that the bridging of pollutant particles could be due to the explicit adsorption and bridging via hydrogen bonding of a coagulation mechanism. SEM micrographs indicated that the flocs produced by LBG have a rough cloudy surface and numerous micro-pores compared with alum, which enabled the capture and removal of POPs from leachate. Results showed that the reduction efficiencies for BPA and 2,4-Di-tert-butylphenol at pH 7.5 were 76% and 84% at LBG dosage of 500 mg·L-1 and 400 mg·L-1, respectively. Coagulant dosage and pH variation have a significant effect on POPs reduction in leachate. Coagulation/flocculation using LBG could be applied for POPs reduction in leachate as a pre-treatment prior to advanced treatments.
    Matched MeSH terms: Flocculation
  4. Shak KPY, Pang YL, Mah SK
    Beilstein J Nanotechnol, 2018;9:2479-2498.
    PMID: 30345212 DOI: 10.3762/bjnano.9.232
    Among many other sustainable functional nanomaterials, nanocellulose is drawing increasing interest for use in environmental remediation technologies due to its numerous unique properties and functionalities. Nanocellulose is usually derived from the disintegration of naturally occurring polymers or produced by the action of bacteria. In this review, some invigorating perspectives on the challenges, future direction, and updates on the most relevant uses of nanocellulose in environmental remediation are discussed. The reported applications and properties of nanocellulose as an adsorbent, photocatalyst, flocculant, and membrane are reviewed in particular. However, additional effort will be required to implement and commercialize nanocellulose as a viable nanomaterial for remediation technologies. In this regard, the main challenges and limitations in working with nanocellulose-based materials are identified in an effort to improve the development and efficient use of nanocellulose in environmental remediation.
    Matched MeSH terms: Flocculation
  5. Hassimi AH, Ezril Hafiz R, Muhamad MH, Sheikh Abdullah SR
    J Environ Manage, 2020 Apr 15;260:110046.
    PMID: 32090804 DOI: 10.1016/j.jenvman.2019.110046
    This study was conducted to examine the production of bioflocculants using agricultural wastewater as a fermentation feedstock under different temperatures and incubation times. The mechanism of flocculation was studied to gain a detailed understanding of the flocculation activity. The highest bioflocculant yield (2.03 g/L) at a temperature of 40 °C was produced in a palm oil mill effluent medium (BioF-POME). Bioflocculant produced from a fermented SME medium (BioF-SME) showed the highest activity. The flocculation tests for colour and turbidity removal from lake water indicated that BioF-SME and BioF-POME performed comparably to commercial alum. Analyses of the bioflocculants using liquid chromatography-mass spectrometry (LC-MS) found that the bioflocculants contained xylose and glucose. The mechanism study showed that flocculation occurred through charge neutralization and interparticle bridging between the bioflocculant polymer and the particles in the lake water. Thus, agricultural wastewater can be used as a fermentation feedstock for high-quality bioflocculants.
    Matched MeSH terms: Flocculation
  6. Mohammed JN, Wan Dagang WRZ
    Water Sci Technol, 2019 Nov;80(10):1807-1822.
    PMID: 32144213 DOI: 10.2166/wst.2020.025
    The biodegradability and safety of the bioflocculants make them a potential alternative to non-biodegradable chemical flocculants for wastewater treatment. However, low yield and production cost has been reported to be the limiting factor for large scale bioflocculant production. Although the utilization of cheap nutrient sources is generally appealing for large scale bioproduct production, exploration to meet the demand for them is still low. Although much progress has been achieved at laboratory scale, Industrial production and application of bioflocculant is yet to be viable due to cost of the production medium and low yield. Thus, the prospects of bioflocculant application as an alternative to chemical flocculants is linked to evaluation and utilization of cheap alternative and renewable nutrient sources. This review evaluates the latest literature on the utilization of waste/wastewater as an alternative substitute for conventional expensive nutrient sources. It focuses on the mechanisms and metabolic pathways involved in microbial flocculant synthesis, culture conditions and nutrient requirements for bioflocculant production, pre-treatment, and also optimization of waste substrate for bioflocculant synthesis and bioflocculant production from waste and their efficiencies. Utilization of wastes as a microbial nutrient source drastically reduces the cost of bioflocculant production and increases the appeal of bioflocculant as a cost-effective alternative to chemical flocculants.
    Matched MeSH terms: Flocculation
  7. Khairul Zaman N, Rohani R, Izni Yusoff I, Kamsol MA, Basiron SA, Abd Rashid AI
    PMID: 34501755 DOI: 10.3390/ijerph18179164
    The evaluation of complex organic and inorganic coagulant's performances and their relationships could compromise the surface water treatment process time and its efficiency. In this work, process optimization was investigated by comparing an eco-friendly chitosan with the industrially used coagulants namely aluminum sulfate (alum), polyaluminum chloride (PAC), and aluminum chlorohydrate (ACH) in compliance with national drinking water standards. To treat various water samples from different treatment plants with turbidity and pH ranges from 20-826.3 NTU and 5.21-6.80, respectively, 5-20 mg/L coagulant dosages were varied in the presence of aluminum, ferum, and manganese. Among all, 10 mg/L of the respective ACH and chitosan demonstrated 97% and 99% turbidity removal in addition to the removal of the metals that complies with the referred standard. However, chitosan owes fewer sensitive responses (turbidity and residual metal) with the change in its input factors (dosage and pH), especially in acidic conditions. This finding suggested its beneficial role to be used under the non-critical dosage monitoring. Meanwhile, ACH was found to perform better than chitosan only at pH > 7.4 with half dosage required. In summary, chitosan and ACH could perform equally at a different set of optimum conditions. This optimization study offers precise selections of coagulants for a practical water treatment operation.
    Matched MeSH terms: Flocculation
  8. Kandasamy G, Shaleh SRM
    Bioresour Technol, 2018 Jan;247:327-331.
    PMID: 28950142 DOI: 10.1016/j.biortech.2017.08.187
    A new approach to recover microalgae from aqueous medium using a bio-flotation method is reported. The method involves utilizing a Moringa protein extract - oil emulsion (MPOE) for flotation removal of Nannochloropsis sp. The effect of various factors has been assessed using this method, including operating parameters such as pH, MPOE dose, algae concentration and mixing time. A maximum flotation efficiency of 86.5% was achieved without changing the pH condition of algal medium. Moreover, zeta potential analysis showed a marked difference in the zeta potential values when increase the MPOE dose concentration. An optimum condition of MPOE dosage of 50ml/L, pH 8, mixing time 4min, and a flotation efficiency of greater than 86% was accomplished. The morphology of algal flocs produced by protein-oil emulsion flocculant were characterized by microscopy. This flotation method is not only simple, but also an efficient method for harvesting microalgae from culture medium.
    Matched MeSH terms: Flocculation
  9. Gobi S, Gobi K, Lee KT, Vadivelu V
    Environ Sci Pollut Res Int, 2021 Jun;28(21):26595-26605.
    PMID: 33484460 DOI: 10.1007/s11356-021-12615-4
    Microalgae-based biodiesel has gained widespread interest as an alternative energy source. Low-cost microalgae harvesting technologies are important for economically feasible biodiesel production. This study investigated, for the first time, the impact of adaptation period and height to diameter (H/D) ratio of a reactor on the growth and self-flocculation of microalgae, without the addition of bacteria. Six reactors were grouped into three sets of experiments, and each reactor was operated for 30 days at similar operating conditions (volume exchange ratio = 25% and settling time = 30 min). In set 1, two 8-L reactors, H5a (H/D ratio: 5) and H8a (H/D ratio: 8), were operated under batch operation. In set 2, reactors H5b and H8b were operated as sequential batch reactors (SBRs) without an adaptation period. In set 3, the reactors H5c and H8c were operated as SBRs with an adaptation period. The findings showed a threefold improvement in biomass productivity for the higher H/D ratio (H8c) and a reduction in biomass loss for microalgae. The H8c reactor exhibited 95% settling efficiency within 5 days, in comparison to 30 days for the H5c reactor. This study demonstrated that a higher H/D ratio and the introduction of an adaptation period in SBR operation positively influences growth and self-flocculation of enriched mixed microalgae culture.
    Matched MeSH terms: Flocculation
  10. Aljuboori AHR, Idris A, Al-Joubory HHR, Uemura Y, Ibn Abubakar BSU
    J Environ Manage, 2015 Mar 01;150:466-471.
    PMID: 25560664 DOI: 10.1016/j.jenvman.2014.12.035
    In this study, the flocculation behavior and mechanism of a cation-independent bioflocculant IH-7 produced by Aspergillus flavus were investigated. Results showed 91.6% was the lowest flocculating rate recorded by IH-7 (0.5 mg L(-1)) at pH range 4-8. Moreover, IH-7 showed better flocculation performance than polyaluminum chloride (PAC) at a wide range of flocculant concentration (0.06-25 mg L(-1)), temperature (5-45 °C) and salinity (10-60% w/w). The current study found that cation addition did not significantly enhance the flocculating rate and IH-7 is a positively charged bioflocculant. These findings suggest that charge neutralization is the main flocculation mechanism of IH-7 bioflocculant. IH-7 was significantly used to flocculate different types of suspended solids such as activated carbons, kaolin clays, soil solids and yeast cells.
    Matched MeSH terms: Flocculation*
  11. Suparmaniam U, Lam MK, Uemura Y, Shuit SH, Lim JW, Show PL, et al.
    Sci Total Environ, 2020 Feb 01;702:134995.
    PMID: 31710849 DOI: 10.1016/j.scitotenv.2019.134995
    Flocculants are foreign particles that aggregate suspended microalgae cells and due to cost factor and toxicity, harvesting of microalgae biomass has shifted towards the use of bioflocculants. In this study, mild acid-extracted bioflocculants from waste chicken's eggshell and clam shell were used to harvest Chlorella vulgaris that was cultivated using chicken compost as nutrient source. It was found that a maximum of 99% flocculation efficiency can be attained at pH medium of 9.8 using 60 mg/L of hydrochloric acid-extracted chicken's eggshell bioflocculant at 50 °C of reaction temperature. On the other hand, 80 mg/L of hydrochloric acid-extracted clam shell bioflocculant was sufficient to recover C. vulgaris biomass at pH 9.8 and optimum temperature of 40 °C. The bioflocculants and bioflocs were characterized using microscopic, zeta potential, XRD, AAS and FT-IR analysis. The result revealed that calcium ions in the bioflocculants are the main contributor towards the flocculation of C. vulgaris, employing charge neutralization and sweeping as possible flocculation mechanisms. The kinetic parameters were best fitted pseudo-second order which resulted in R2 of 0.99 under optimal flocculation temperature. The results herein, disclosed the applicability of shell waste-derived bioflocculants for up-scaled microalgae harvesting for biodiesel production.
    Matched MeSH terms: Flocculation*
  12. Mohd Nasir N, Mohd Yunos FH, Wan Jusoh HH, Mohammad A, Lam SS, Jusoh A
    J Environ Manage, 2019 Nov 01;249:109373.
    PMID: 31415924 DOI: 10.1016/j.jenvman.2019.109373
    Microalgae have been increasingly used to generate biofuel, thus a sustainable technique should be implemented to harvest the biomass to ensure its existence in the environment. Aspergillus niger was used as bio-flocculant to harvest microalgae from aquaculture wastewater via flocculation technique over a range of pH and mixing rate. The bio-flocculant showed ability to adapt at a wide range of pH from 3.0 to 9.0 and at a mixing rate of 100-150 rpm, producing a harvesting efficiency of higher than 90%. The treated water possessed low concentration of chlorophyll-a (0.3-0.6 mg L-1) and cell density (2 × 106-3 × 106 cell mL-1). These indicate that Aspergillus niger is a promising bio-flocculant to be used in harvesting microalgae, thus promoting the use of flocculation as a green technology in aquaculture wastewater treatment.
    Matched MeSH terms: Flocculation
  13. Taengphu S, Kayansamruaj P, Kawato Y, Delamare-Deboutteville J, Mohan CV, Dong HT, et al.
    PeerJ, 2022;10:e13157.
    PMID: 35462762 DOI: 10.7717/peerj.13157
    BACKGROUND: Tilapia tilapinevirus, also known as tilapia lake virus (TiLV), is a significant virus that is responsible for the die-off of farmed tilapia across the globe. The detection and quantification of the virus using environmental RNA (eRNA) from pond water samples represents a potentially non-invasive and routine strategy for monitoring pathogens and early disease forecasting in aquaculture systems.

    METHODS: Here, we report a simple iron flocculation method for concentrating viruses in water, together with a newly-developed hydrolysis probe quantitative RT-qPCR method for the detection and quantification of TiLV.

    RESULTS: The RT-qPCR method designed to target a conserved region of the TiLV genome segment 9 has a detection limit of 10 viral copies per µL of template. The method had a 100% analytical specificity and sensitivity for TiLV. The optimized iron flocculation method was able to recover 16.11 ± 3.3% of the virus from water samples spiked with viral cultures. Tilapia and water samples were collected for use in the detection and quantification of TiLV disease during outbreaks in an open-caged river farming system and two earthen fish farms. TiLV was detected from both clinically sick and asymptomatic fish. Most importantly, the virus was successfully detected from water samples collected from different locations in the affected farms (i.e., river water samples from affected cages (8.50 × 103 to 2.79 × 105 copies/L) and fish-rearing water samples, sewage, and reservoir (4.29 × 103 to 3.53 × 104 copies/L)). By contrast, TiLV was not detected in fish or water samples collected from two farms that had previously experienced TiLV outbreaks and from one farm that had never experienced a TiLV outbreak. In summary, this study suggests that the eRNA detection system using iron flocculation, coupled with probe based-RT-qPCR, is feasible for use in the concentration and quantification of TiLV from water. This approach may be useful for the non-invasive monitoring of TiLV in tilapia aquaculture systems and may support evidence-based decisions on biosecurity interventions needed.

    Matched MeSH terms: Flocculation
  14. Mukherjee S, Mukhopadhyay S, Pariatamby A, Ali Hashim M, Sahu JN, Sen Gupta B
    J Environ Sci (China), 2014 Sep 1;26(9):1851-60.
    PMID: 25193834 DOI: 10.1016/j.jes.2014.06.029
    Recovery of cellulose fibres from paper mill effluent has been studied using common polysaccharides or biopolymers such as Guar gum, Xanthan gum and Locust bean gum as flocculent. Guar gum is commonly used in sizing paper and routinely used in paper making. The results have been compared with the performance of alum, which is a common coagulant and a key ingredient of the paper industry. Guar gum recovered about 3.86mg/L of fibre and was most effective among the biopolymers. Settling velocity distribution curves demonstrated that Guar gum was able to settle the fibres faster than the other biopolymers; however, alum displayed the highest particle removal rate than all the biopolymers at any of the settling velocities. Alum, Guar gum, Xanthan gum and Locust bean gum removed 97.46%, 94.68%, 92.39% and 92.46% turbidity of raw effluent at a settling velocity of 0.5cm/min, respectively. The conditions for obtaining the lowest sludge volume index such as pH, dose and mixing speed were optimised for guar gum which was the most effective among the biopolymers. Response surface methodology was used to design all experiments, and an optimum operational setting was proposed. The test results indicate similar performance of alum and Guar gum in terms of floc settling velocities and sludge volume index. Since Guar gum is a plant derived natural substance, it is environmentally benign and offers a green treatment option to the paper mills for pulp recycling.
    Matched MeSH terms: Flocculation
  15. Zulkeflee Z, Sánchez A
    Water Sci Technol, 2014;70(6):1032-9.
    PMID: 25259492 DOI: 10.2166/wst.2014.329
    An innovative approach using soybean residues for the production of bioflocculants through solid-state fermentation was carried out in 4.5 L near-to-adiabatic bioreactors at pilot-scale level. An added inoculum of the strain Bacillus subtilis UPMB13 was tested in comparison with control reactors without any inoculation after the thermophilic phase of the fermentation. The flocculating performances of the extracted bioflocculants were tested on kaolin suspensions, and crude bioflocculants were obtained from 20 g of fermented substrate through ethanol precipitation. The production of bioflocculants was observed to be higher during the death phase of microbial growth. The bioflocculants were observed to be granular in nature and consisted of hydroxyl, carboxyl and methoxyl groups that aid in their flocculating performance. The results show the vast potential of the idea of using wastes to produce bioactive materials that can replace the current dependence on chemicals, for future prospect in water treatment applications.
    Matched MeSH terms: Flocculation
  16. Nor-Anuar A, Ujang Z, van Loosdrecht MC, de Kreuk MK, Olsson G
    Water Sci Technol, 2012;65(2):309-16.
    PMID: 22233910 DOI: 10.2166/wst.2012.837
    Aerobic granular sludge has a number of advantages over conventional activated sludge flocs, such as cohesive and strong matrix, fast settling characteristic, high biomass retention and ability to withstand high organic loadings, all aspects leading towards a compact reactor system. Still there are very few studies on the strength of aerobic granules. A procedure that has been used previously for anaerobic granular sludge strength analysis was adapted and used in this study. A new coefficient was introduced, called a stability coefficient (S), to quantify the strength of the aerobic granules. Indicators were also developed based on the strength analysis results, in order to categorize aerobic granules into three levels of strength, i.e. very strong (very stable), strong (stable) and not strong (not stable). The results indicated that aerobic granules grown on acetate were stronger (high density: >150 g T SSL(-1) and low S value: 5%) than granules developed on sewage as influent. A lower value of S indicates a higher stability of the granules.
    Matched MeSH terms: Flocculation
  17. Kazi SN, Badarudin A, Zubir MN, Ming HN, Misran M, Sadeghinezhad E, et al.
    Nanoscale Res Lett, 2015;10:212.
    PMID: 25995712 DOI: 10.1186/s11671-015-0882-7
    This paper presents a unique synergistic behavior between a graphene oxide (GO) and graphene nanoplatelet (GnP) composite in an aqueous medium. The results showed that GO stabilized GnP colloid near its isoelectric point and prevented rapid agglomeration and sedimentation. It was considered that a rarely encountered charge-dependent electrostatic interaction between the highly charged GO and weakly charged GnP particles kept GnP suspended at its rapid coagulation and phase separation pH. Sedimentation and transmission electron microscope (TEM) micrograph images revealed the evidence of highly stable colloidal mixtures while zeta potential measurement provided semi-quantitative explanation on the mechanism of stabilization. GnP suspension was confirmed via UV-vis spectral data while contact angle measurement elucidated the close resemblance to an aqueous solution indicating the ability of GO to mediate the flocculation prone GnP colloids. About a tenfold increase in viscosity was recorded at a low shear rate in comparison to an individual GO solution due to a strong interaction manifested between participating colloids. An optimum level of mixing ratio between the two constituents was also obtained. These new findings related to an interaction between charge-based graphitic carbon materials would open new avenues for further exploration on the enhancement of both GO and GnP functionalities particularly in mechanical and electrical domains.
    Matched MeSH terms: Flocculation
  18. Abbas SZ, Yong YC, Ali Khan M, Siddiqui MR, Hakami AAH, Alshareef SA, et al.
    Polymers (Basel), 2020 Jul 13;12(7).
    PMID: 32668712 DOI: 10.3390/polym12071545
    Four strains of bioflocculant-producing bacteria were isolated from a palm oil mill effluent (POME). The four bacterial strains were identified as Pseudomonas alcaliphila (B1), Pseudomonas oleovorans (B2), Pseudomonas chengduensis (B3), and Bacillus nitratireducens (B4) by molecular identification. Among the four bacterial strains, Bacillus nitratireducens (B4) achieved the highest flocculating activity (49.15%) towards kaolin clay suspension after eight hours of cultivation time and was selected for further studies. The optimum conditions for Eriochrome Black T (EBT) flocculation regarding initial pH, type of cation, and B4 dosage were determined to be pH 2, Ca2⁺ cations, and a dosage of 250 mL/L of nutrient broth containing B4. Under these conditions, above 90% of EBT dye removal was attained. Fourier transform infrared spectroscopic (FT-IR) analysis of the bioflocculant revealed the presence of hydroxyl, alkyl, carboxyl, and amino groups. This bioflocculant was demonstrated to possess a good flocculating activity, being a promissory, low-cost, harmless, and environmentally friendly alternative for the treatment of effluents contaminated with dyes.
    Matched MeSH terms: Flocculation
  19. Abdullah, A.M., Hamidah, H., Alam, M.Z.
    Although one of the major users of flocculants are water and wastewater treatment industries, flocculants are also used in various food industries. The chemical flocculants are preferred widely in these industries due to low production cost and fast production ability. However, the negative effects of the chemical flocculants should not be neglected to gain the economic benefits only. Therefore, the researchers are working to discover efficient and economical flocculants from biological sources. Several attempts have been made and are still being made to extract or produce bioflocculants from natural sources such as plants, bacteria, fungi, yeast, algae, etc. The review revealed that significant amount of work have been done in the past, in search of bioflocculant. However, commercially viable bioflocculants are yet to be marketed widely. With the advent of new biotechnologies and advances in genetic engineering, the researchers are hopeful to discover or develop commercially viable, safe and environmentfriendly bioflocculants.
    Matched MeSH terms: Flocculation
  20. Kandasamy G, Shaleh SRM
    Appl Biochem Biotechnol, 2017 Jun;182(2):586-597.
    PMID: 27957653 DOI: 10.1007/s12010-016-2346-7
    Harvesting microalgae from medium is a major challenge due to their small size and low concentrations. In an attempt to find a cost-effective and eco-friendly harvesting technique, mung bean (Vigna radiata) protein extract (MBPE) was used for flocculation of Nannochloropsis sp. The effects of parameters such as pH, flocculant dose, algae concentration, and mixing time were used to study the flocculation efficiency (FE) of MBPE. Optimum parameters of MBPE dosage of 20 mL L(-1) and a mixing rate of 300 rpm for 6 min achieved a FE of >92% after 2 h of settling time. MBPE-aggregated microlga flocs were characterized by microscopy. Zeta potential values decreased with increasing flocculant dose, and the values obtained were -6.93 ± 0.60, -5.36 ± 0.64, and -4.44 ± 0.22 for doses of 10, 20, and 30 mL L(-1), respectively. In conclusion, MBPE flocculants used in this study are safe, nontoxic, and pollution free, so they could be used for an effective, convenient, and rapid harvesting of microalgae in an eco-friendly approach. These methods are sustainable and could be applied in industrial scale for aquaculture nutrition.
    Matched MeSH terms: Flocculation
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links