Displaying publications 1 - 20 of 124 in total

Abstract:
Sort:
  1. Pantong W, Pederick JL, Maenpuen S, Tinikul R, Jayapalan JJ, Jovcevski B, et al.
    Protein Sci, 2023 Jun;32(6):e4654.
    PMID: 37165541 DOI: 10.1002/pro.4654
    Methylenetetrahydrofolate reductase (MTHFR) is a key metabolic enzyme in colonization and virulence of Neisseria meningitidis, a causative agent of meningococcal diseases. Here, the biochemical and structural properties of MTHFR from a virulent strain of N. meningitidis serogroup B (NmMTHFR) were characterized. Unlike other orthologs, NmMTHFR functions as a unique homohexamer, composed of three homo-dimerization partners, as shown in our 2.7 Å resolution crystal structure. Six active sites were formed solely within monomers and located away from the oligomerization interfaces. Flavin adenine dinucleotide cofactor formed hydrogen bonds with conserved sidechains, positioning its isoalloxazine ring adjacent to the overlapping binding sites of nicotinamide adenine dinucleotide (NADH) coenzyme and CH2 -H4 folate substrate. NmMTHFR utilized NADH (Km  = 44 μM) as an electron donor in the NAD(P)H-CH2 -H4 folate oxidoreductase assay, but not nicotinamide adenine dinucleotide phosphate (NADPH) which is the donor required in human MTHFR. In silico analysis and mutagenesis studies highlighted the significant difference in orientation of helix α7A (Phe215-Thr225) with that in the human enzyme. The extended sidechain of Met221 on helix α7A plays a role in stabilizing the folded structure of NADH in the hydrophobic box. This supports the NADH specificity by restricting the phosphate group of NADPH that causes steric clashes with Glu26. The movement of Met221 sidechain allows the CH2 -H4 folate substrate to bind. The unique topology of its NADH and CH2 -H4 folate binding pockets makes NmMTHFR a promising drug target for the development of new antimicrobial agents that may possess reduced off-target side effects.
    Matched MeSH terms: Folic Acid/metabolism; Folic Acid/chemistry
  2. Hasanah CI, Khan UA, Musalmah M, Razali SM
    J Affect Disord, 1997 Nov;46(2):95-9.
    PMID: 9479613
    Forty-five hospitalised patients with DSM-III-R diagnosis of mania, were found to have a mean red-cell folate level of 193 nmol/l, as compared to 896 nmol/l in the control group (P < 0.00001). Assessment of serum folate in both groups showed no significant differences in the levels. Furthermore the manic patients and the controls were matched by the socio-economic status. This indicated that the reduced red-cell folate in mania is associated with the illness and not due to reduced absorption or dietary deficiency of folate. Considering previous studies that showed reduced red-cell folate in depression, our findings suggest that reduced red-cell folate occurred in both phases of bipolar disorders.
    Matched MeSH terms: Folic Acid/analysis; Folic Acid/blood*; Folic Acid Deficiency/blood*; Folic Acid Deficiency/diagnosis
  3. Gazzali AM, Lobry M, Colombeau L, Acherar S, Azaïs H, Mordon S, et al.
    Eur J Pharm Sci, 2016 Oct 10;93:419-30.
    PMID: 27575880 DOI: 10.1016/j.ejps.2016.08.045
    Folic acid is a small molecule, also known as vitamin B9. It is an essential compound involved in important biochemical processes. It is widely used as a vector for targeted treatment and diagnosis especially in cancer therapeutics. Nevertheless, not many authors address the problem of folic acid degradation. Several researchers reported their observations concerning its denaturation, but they generally only took into account one parameter (pH, temperature, light or O2etc.). In this review, we will focus on five main parameters (assessed individually or in conjunction with one or several others) that have to be taken into account to avoid the degradation of folic acid: light, temperature, concentration, oxygen and pH, which are the most cited in the literature. Scrupulous bibliographic research enabled us to determine two additional degradation factors that are the influence of singlet oxygen and electron beam on folic acid stability, which are not considered as among the prime factors. Although these two factors are not commonly present as compared to the others, singlet oxygen and electron beams intervene in new therapeutic technologies and must be taken in consideration for further applications such photodynamic or X-rays therapies.
    Matched MeSH terms: Folic Acid/radiation effects; Folic Acid/chemistry*
  4. Samson KLI, Loh SP, Lee SS, Sulistyoningrum DC, Khor GL, Shariff ZBM, et al.
    BMJ Glob Health, 2020 12;5(12).
    PMID: 33272946 DOI: 10.1136/bmjgh-2020-003897
    INTRODUCTION: Weekly iron-folic acid (IFA) supplements are recommended for all menstruating women in countries where anaemia prevalence is >20%. Anaemia caused by folate deficiency is low worldwide, and the need to include folic acid is in question. Including folic acid might reduce the risk of a neural tube defect (NTD) should a woman become pregnant. Most weekly supplements contain 0.4 mg folic acid; however, WHO recommends 2.8 mg because it is seven times the daily dose effective in reducing NTDs. There is a reluctance to switch to supplements containing 2.8 mg of folic acid because of a lack of evidence that this dose would prevent NTDs. Our aim was to investigate the effect of two doses of folic acid, compared with placebo, on red blood cell (RBC) folate, a biomarker of NTD risk.

    METHODS: We conducted a three-arm double-blind efficacy trial in Malaysia. Non-pregnant women (n=331) were randomised to receive 60 mg iron and either 0, 0.4, or 2.8 mg folic acid once weekly for 16 weeks.

    RESULTS: At 16 weeks, women receiving 0.4 mg and 2.8 mg folic acid per week had a higher mean RBC folate than those receiving 0 mg (mean difference (95% CI) 84 (54 to 113) and 355 (316 to 394) nmol/L, respectively). Women receiving 2.8 mg folic acid had a 271 (234 to 309) nmol/L greater mean RBC folate than those receiving 0.4 mg. Moreover, women in the 2.8 mg group were seven times (RR 7.3, 95% CI 3.9 to 13.7; p<0.0001) more likely to achieve an RBC folate >748 nmol/L, a concentration associated with a low risk of NTD, compared with the 0.4 mg group.

    CONCLUSION: Weekly IFA supplements containing 2.8 mg folic acid increases RBC folate more than those containing 0.4 mg. Increased availability and access to the 2.8 mg formulation is needed.

    TRAIL REGISTRATION NUMBER: This trial is registered with the Australian New Zealand Clinical Trial Registry (ACTRN12619000818134).

    Matched MeSH terms: Folic Acid*
  5. Sreeharsha N, Prasanthi S, Mahalakshmi SVVNS, Goudanavar PS, Naveen NR, Gowthami B, et al.
    Molecules, 2022 Nov 16;27(22).
    PMID: 36432014 DOI: 10.3390/molecules27227914
    A brand-new nano-crystal (NC) version of the hydrophobic drug Paclitaxel (PT) were formulated for cancer treatment. A stable NC formulation for the administration of PT was created using the triblock co-polymer Pluronic F127. To achieve maximum entrapment effectiveness and minimal particle size, the formulation was improved using the central composite design by considering agitation speed and vacuum pressure at five levels (coded as +1.414, +1, 0, -1, and -1.414). According to the Design Expert software's predictions, 13 runs were created and evaluated for the chosen responses. The formulation prepared with an agitation speed of 1260 RPM and a vacuum pressure of 77.53 mbar can meet the requirements of the ideal formulation in order to achieve 142.56 nm of PS and 75.18% EE, according to the level of desirability (D = 0.959). Folic acid was conjugated to Pluronic F127 to create folate receptor-targeted NC. The drug release profile of the nano-crystals in vitro demonstrated sustained release over an extended period. Folate receptor (FR)-targeted NC (O-PT-NC-Folate) has also been prepared by conjugating folic acid to Pluronic F127. MTT test is used to validate the targeting efficacy on the FR-positive human oral cancer cell line (KB). At pharmacologically relevant concentrations, the PT nano-crystal formulation did not cause hemolysis. Compared to non-targeted NC of PT, the O-PT-NC-Folate showed a comparable but more sustained anti-cancer effect, according to an in vivo anti-tumor investigation in NCI/ADR-RES cell lines. The remarkable anti-tumor effectiveness, minimal toxicity, and simplicity of scale-up manufacturing of the NC formulations indicate their potential for clinical development. Other hydrophobic medications that are formulated into nano-systems for improved therapy may benefit from the formulation approach.
    Matched MeSH terms: Folic Acid/chemistry
  6. Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI
    Eur J Pharm Sci, 2023 Apr 01;183:106365.
    PMID: 36563914 DOI: 10.1016/j.ejps.2022.106365
    Malaria poses a severe public health risk and a significant economic burden in disease-endemic countries. One of the most severe issues in malaria control is the development of drug resistance in malaria parasites. The standard treatment for malaria is artemisinin-combination therapy (ACT). Nevertheless, the Plasmodium parasite's extensive resistance to prior drugs and reduced ACT efficiency necessitates novel drug discovery. The progress in discovering novel, affordable, and effective antimalarial agents is significant in combating drug resistance, and the hybrid drug concept can be used to covalently link two or more active pharmacophores that may act on multiple targets. Pyrazole and pyrazoline derivatives are considered pharmacologically necessary active heterocyclic scaffolds that possess almost all types of pharmacological activities. This review summarized recent progress in antimalarial activities of synthesized pyrazole and pyrazoline derivatives. The studies published since 2000 are included in this systematic review. This review is anticipated to be beneficial for future study and new ideas in searching for rational development strategies for more effective pyrazole and pyrazoline derivatives as antimalarial drugs.
    Matched MeSH terms: Folic Acid Antagonists*
  7. Kue CS, Kamkaew A, Burgess K, Kiew LV, Chung LY, Lee HB
    Med Res Rev, 2016 Apr;36(3):494-575.
    PMID: 26992114 DOI: 10.1002/med.21387
    For the purpose of this review, active targeting in cancer research encompasses strategies wherein a ligand for a cell surface receptor expressed on tumor cells is used to deliver a cytotoxic or imaging cargo. This area of research is more than two decades old, but in those 20 and more years, how many receptors have been studied extensively? What kinds of the ligands are used for active targeting? Are they mostly naturally occurring molecules such as folic acid, or synthetic substances developed in campaigns for medicinal chemistry efforts? This review outlines the most important receptor or ligand combinations that have been used in active targeting to answer these questions, and therefore to address the most important one of all: is research in active targeting affording diminishing returns, or is this an area for which the potential far exceeds progress made so far?
    Matched MeSH terms: Folic Acid
  8. Henderson AM, Aleliunas RE, Loh SP, Khor GL, Harvey-Leeson S, Glier MB, et al.
    J Nutr, 2018 Jun 01;148(6):885-890.
    PMID: 29878267 DOI: 10.1093/jn/nxy057
    BACKGROUND: Folic acid fortification of grains is mandated in many countries to prevent neural tube defects. Concerns regarding excessive intakes of folic acid have been raised. A synthetic analog of the circulating form of folate, l-5-methyltetrahydrofolate (l-5-MTHF), may be a potential alternative.

    OBJECTIVE: The objective of this study was to determine the effects of folic acid or l-5-MTHF supplementation on blood folate concentrations, methyl nutrient metabolites, and DNA methylation in women living in Malaysia, where there is no mandatory fortification policy.

    METHODS: In a 12-wk, randomized, placebo-controlled intervention trial, healthy Malaysian women (n = 142, aged 20-45 y) were randomly assigned to receive 1 of the following supplements daily: 1 mg (2.27 μmol) folic acid, 1.13 mg (2.27 μmol) l-5-MTHF, or a placebo. The primary outcomes were plasma and RBC folate and vitamin B-12 concentrations. Secondary outcomes included plasma total homocysteine, total cysteine, methionine, betaine, and choline concentrations and monocyte long interspersed nuclear element-1 (LINE-1) methylation.

    RESULTS: The folic acid and l-5-MTHF groups had higher (P folic acid group [RBC folate, 1498 ± 580 nmol/L; plasma folate, 40.1 nmol/L (24.9, 52.7 nmol/L)]. The folic acid and l-5-MTHF groups had 17% and 15%, respectively, lower (P folic acid and l-5-MTHF groups. No differences in plasma vitamin B-12, total cysteine, methionine, betaine, and choline and monocyte LINE-1 methylation were observed.

    CONCLUSION: These findings suggest differential effects of l-5-MTHF compared with folic acid supplementation on blood folate concentrations but no differences on plasma total homocysteine lowering in Malaysian women. This trial was registered at clinicaltrials.gov as NCT01584050.

    Matched MeSH terms: Folic Acid/administration & dosage*; Folic Acid/blood*; Folic Acid/pharmacology
  9. Khor GL, Duraisamy G, Loh SP, Green T
    Asia Pac J Clin Nutr, 2006;15(3):341-9.
    PMID: 16837426
    The protective role of folic acid taken during the periconceptual period in reducing the occurrence of neural tube defects (NTD) has been well documented by epidemiological evidence, randomized controlled trials and intervention studies. Much of the evidence is derived from western populations while similar data on Asian subjects is relatively nascent. Baseline data on folate status of Malaysian women is lacking, while NTD prevalence is estimated as 10 per 10,000 births. This study was conducted with the objective of determining the dietary and blood folate status of Malaysian women of childbearing age. A total of 399 women comprising 140 Malay, 131 Chinese and 128 Indian subjects were recruited from universities and worksites in the suburbs of Kuala Lumpur. Inclusion criteria were that the subjects were not pregnant or breastfeeding, not taking folic acid supplements, not habitual drinkers or smokers. Based on a 24-hour recall, the median intake level for folate was 66 microg (15.7-207.8 microg), which amounts to 16.5% of the Malaysian Recommended Nutrient Intakes level. The median (5-95th percentiles) values for plasma and red cell folate (RBC) concentrations were 11 (4-33) nmol/L and 633 (303-1209) nmol/L respectively. Overall, nearly 15.1% showed plasma folate deficiency (< 6.8 nmol/L), with Indian subjects having the highest prevalence (21.5%). Overall prevalence of RBC folate deficiency (<363 nmol/L) was 9.3%, and an almost similar level prevailed for each ethnic group. Only 15.2% had RBC concentration exceeding 906 nmol/L, which is associated with a very low risk of NTD. The result of this study point to the need for intervention strategies to improve the blood folate status of women of childbearing age, so that they have adequate protection against the occurrence of NTD at birth.
    Matched MeSH terms: Folic Acid/administration & dosage*; Folic Acid/blood*; Folic Acid Deficiency/epidemiology*
  10. Li Y, Ouyang Y, Wu H, Wang P, Huang Y, Li X, et al.
    Eur J Med Chem, 2022 Jan 15;228:113979.
    PMID: 34802838 DOI: 10.1016/j.ejmech.2021.113979
    The shortage of new antibiotics makes infections caused by gram-negative (G-) bacteria a significant clinical problem. The key enzymes involved in folate biosynthesis represent important targets for drug discovery, and new antifolates with novel mechanisms are urgently needed. By targeting to dihydrofolate reductase (DHFR), a series of 1,3-diamino-7H-pyrrol[3,2-f]quinazoline (PQZ) compounds were designed, and exhibited potent antibacterial activities in vitro, especially against multi-drug resistant G- strains. Multiple experiments indicated that PQZ compounds contain a different molecular mechanism against the typical DHFR inhibitor, trimethoprim (TMP), and the thymidylate synthase (TS) was identified as another potential but a relatively weak target. A significant synergism between the representative compound, OYYF-175, and sulfamethoxazole (SMZ) was observed with a strong cumulative and significantly bactericidal effect at extremely low concentrations (2 μg/mL for SMZ and 0.03 pg/mL for OYYF-175), which could be resulted from the simultaneous inhibition of dihydropteroate synthase (DHPS), DHFR and TS. PQZ compounds exhibited therapeutic effects in a mouse model of intraperitoneal infections caused by Escherichia coli (E. coli). The co-crystal structure of OYYF-175-DHFR was solved and the detailed interactions were provided. The inhibitors reported represent innovative chemical structures with novel molecular mechanism of action, which will benefit the generation of new, efficacious bactericidal compounds.
    Matched MeSH terms: Folic Acid/metabolism*; Folic Acid Antagonists/chemical synthesis; Folic Acid Antagonists/pharmacology*; Folic Acid Antagonists/chemistry
  11. Ali J, Hassan K, Arshat H
    Med J Malaysia, 1982 Jun;37(2):160-4.
    PMID: 6890140
    Folate and vitamin B 12 status in pregnancy was studied in a group of 190 Malaysian mothers belonging to the three major ethnic origins. Cord blood was also analysed for the same vitamins. Ethnic variations with regard to deficiency in these two vitamins was determined. About 58.5 percent of the pregnant mothers suffered from lowered serum folate levels and 32.4 percent had lowered RBC folate levels. In contrast vitamin B 12 levels were within normal limits. Cord blood levels of these vitamins were significantly higher than. the corresponding levels in the maternal blood, suggesting the possible involvement of an active process in the transfer of folates and vitamin B 12 to the fetus.
    Matched MeSH terms: Folic Acid/blood*
  12. Singh Y, Gupta G, Kazmi I, Al-Abbasi FA, Negi P, Chellappan DK, et al.
    Dermatol Ther, 2020 11;33(6):e13871.
    PMID: 32558055 DOI: 10.1111/dth.13871
    Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the primary causative organism in corona virus disease-19 (COVID-19) infections, is a novel member of the human coronavirus family which was first identified in Wuhan, China, towards the end of 2019. This letter reveals new vital missing links in our current understanding of the mechanisms that lead to cell death triggered by ferroptotic stress in COVID-19 infection. It further reveal the importance of homocysteine mediated trans-sulfuration pathway in COVID-19 infection. Hence, Vitamin B6, folic acid, and Vitamin B12 should be incorporated in the treatment regimen for SARS CoV-2 infections to suppress complications, as the virus mediates altered host cell metabolism.
    Matched MeSH terms: Folic Acid/administration & dosage
  13. Samson KLI, Loh SP, Khor GL, Mohd Shariff Z, Yelland LN, Leemaqz S, et al.
    BMJ Open, 2020 02 05;10(2):e034598.
    PMID: 32029499 DOI: 10.1136/bmjopen-2019-034598
    INTRODUCTION: Folic acid (0.4 mg) taken prior to and during early pregnancy reduces the risk of neural tube defects (NTDs). Because these birth defects occur early in pregnancy, before women may know they are pregnant, many countries have mandated the addition of folic acid to food staples. In countries where fortification is not possible, and weekly iron folic acid programmes exist to reduce anaemia, the WHO recommends that 2.8 mg (7×0.4 mg) folic acid be given instead of the current weekly practice of 0.4 mg. Currently, there is a lack of evidence to support if the 2.8 mg folic acid per week dose is sufficient to raise erythrocyte folate concentrations to a level associated with a reduced risk of a NTD-affected pregnancy. We aim to conduct a three-arm randomised controlled trial to determine the effect of weekly folic acid with iron on erythrocyte folate, a biomarker of NTD risk.

    METHODS AND ANALYSIS: We will recruit non-pregnant women (n=300; 18-45 years) from Selangor, Malaysia. Women will be randomised to receive either 2.8, 0.4 or 0.0 (placebo) mg folic acid with 60 mg iron weekly for 16 weeks, followed by a 4-week washout period. The primary outcome will be erythrocyte folate concentration at 16 weeks and the mean concentration will be compared between randomised treatment groups (intention-to-treat) using a linear regression model adjusting for the baseline measure.

    ETHICS AND DISSEMINATION: Ethical approval was obtained from the University of British Columbia (H18-00768) and Universiti Putra Malaysia (JKEUPM-2018-255). The results of this trial will be presented at scientific conferences and published in peer-reviewed journals.

    TRIAL REGISTRATION NUMBERS: ACTRN12619000818134 and NMRR-19-119-45736.

    Matched MeSH terms: Folic Acid/administration & dosage*
  14. Choudhury H, Pandey M, Wen LP, Cien LK, Xin H, Yee ANJ, et al.
    Curr Pharm Des, 2020;26(42):5365-5379.
    PMID: 32693762 DOI: 10.2174/1381612826666200721000958
    Breast cancer (BC) is the commonest cause of cancer deaths among Women. It is known to be caused due to mutations in certain receptors, viz. estrogens or progesterones. The most frequently used conventional treatment strategies against BC include chemotherapy, radiation therapy, and partial or entire mastectomy, however, these strategies are often associated with multiple adverse effects, thus reducing patient compliance. Advancement of nanotechnology in the medical application has been made to enhance the therapeutic effectiveness with a significant reduction in the unintended side-effects associated with incorporated anticancer drugs against cancer. The surface engineering technology of the nanocarriers is more pronounced in delivering the therapeutics specifically to target cells. Consequently, folic acid, a small molecular ligand for the folate receptor overexpressed cells, has shown immense response in treating BC cells. Folic acid conjugated nanocarriers have shown remarkable efficiency in targeting overexpressed folate receptors on the surface of BC cells. Binding of these target-specific folate-conjugated nanocarriers substantially improves the internalization of chemotherapeutics in BC cells, without much exposing the other parts of the body. Simultaneously, these folate-- conjugated nanocarriers provide imaging for regular monitoring of targeted drug delivery systems and their responses to an anticancer therapy. Therefore, this review demonstrates the potential of folate-conjugated nanotherapeutics for the treatment and theranostic approaches against BC along with the significant challenges to anticancer therapy, and the prospective insights into the clinical importance and effectiveness of folate conjugate nanocarriers.
    Matched MeSH terms: Folic Acid/therapeutic use
  15. Syed Yaacob SN, Huyop F, Misson M, Abdul Wahab R, Huda N
    PeerJ, 2022;10:e13053.
    PMID: 35345581 DOI: 10.7717/peerj.13053
    BACKGROUND: Honey produced by Heterotrigona itama is highly preferred among consumers due to its high-value as a functional food and beneficial lactic acid bacteria (LAB) reservoir. Fructophilic lactic acid bacteria (FLAB) are a group of LAB with unique growth characteristics and are regarded as promising producers of bioactive compounds. Hence, it is not surprising that LAB, especially FLAB, may be involved with the excellent bioactivity of H. itama honey. With the trending consumer preference for H. itama honey coupled with increasing awareness for healthy food, the genomic background of FLAB isolated from this honey must, therefore, be clearly understood. In this study, one FLAB strain designated as Sy-1 was isolated from freshly collected H. itama honey. Its FLAB behavior and genomic features were investigated to uncover functional genes that could add value to functional food.

    METHODS: The fructophilic characteristics of strain Sy-1 were determined, and the genome was sequenced using Illumina iSeq100 and Oxford Nanopore. The average nucleotide identity and phylogenetic analyses based on 16S rRNA, 92 core genes, and whole-genome sequence were performed to unravel the phylogenetic position of strain Sy-1. NCBI Prokaryotic Genome Annotation Pipeline annotated the genome, while the EggNOG-mapper, BLASTKoala, and GHOSTKoala were used to add functional genes and pathways information.

    RESULTS: Strain Sy-1 prefers D-fructose over D-glucose and actively metabolizes D-glucose in the presence of electron acceptors. Genomic annotation of strain Sy-1 revealed few genes involved in carbohydrate transport and metabolism, and partial deletion of adhE gene, in line with the characteristic of FLAB. The 16S rRNA gene sequence of strain Sy-1 showed the highest similarity to unknown LAB species isolated from the gut of honeybees. The phylogenetic analyses discovered that strain Sy-1 belonged to the Lactobacillaceae family and formed a separate branch closer to type strain from the genera of Acetilactobacillus and Apilactobacillus. The ANI analysis showed the similarity of the closest relative, Apilactobacillus micheneri Hlig3T. The assembled genome of Sy-1 contains 3 contigs with 2.03 Mbp and a 41% GC content. A total of 1,785 genes were identified, including 1,685 protein-coding genes, 68 tRNA, and 15 rRNA. Interestingly, strain Sy-1 encoded complete genes for the biosynthesis of folate and riboflavin. High-performance liquid chromatography analysis further confirmed the high production of folic acid (1.346 mg/L) by Sy-1.

    DISCUSSION: Based on phylogenetic and biochemical characteristics, strain Sy-1 should be classified as a novel genus in the family of Lactobacillaceae and a new member of FLAB. The genome information coupled with experimental studies supported the ability of strain Sy-1 to produce high folic acid. Our collective findings support the suitable application of FLAB strain Sy-1 in the functional food and pharmaceutical industries.

    Matched MeSH terms: Folic Acid/metabolism
  16. Al-Obaidy R, Haider AJ, Al-Musawi S, Arsad N
    Sci Rep, 2023 Feb 23;13(1):3180.
    PMID: 36823237 DOI: 10.1038/s41598-023-30221-x
    Fibrosarcoma is a rare type of cancer that affects cells known as fibroblasts that are malignant, locally recurring, and spreading tumor in fibrous tissue. In this work, an iron plate immersed in an aqueous solution of double added deionized water, supplemented with potassium permanganate solution (KMnO4) was carried out by the pulsed laser ablation in liquid method (PLAIL). Superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized using different laser wavelengths (1064, 532, and 266 nm) at a fluence of 28 J/cm2 with 100 shots of the iron plate to control the concentration, shape and size of the prepared high-stability SPIONs. The drug nanocarrier was synthesized by coating SPION with paclitaxel (PTX)-loaded chitosan (Cs) and polyethylene glycol (PEG). This nanosystem was functionalized by receptors that target folate (FA). The physiochemical characteristics of SPION@Cs-PTX-PEG-FA nanoparticles were evaluated and confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray diffraction (XRD), atomic force microscopy (AFM), and dynamic light scattering (DLS) methods. Cell internalization, cytotoxicity assay (MTT), apoptosis induction, and gene expression of SPION@Cs-PTX-PEG-FA were estimated in fibrosarcoma cell lines, respectively. In vivo studies used BALB/c tumor-bearing mice. The results showed that SPION@Cs-PTX-PEG-FA exhibited suitable physical stability, spherical shape, desirable size, and charge. SPION@Cs-PTX-PEG-FA inhibited proliferation and induced apoptosis of cancer cells (P 
    Matched MeSH terms: Folic Acid/chemistry
  17. Al-Thiabat MG, Gazzali AM, Mohtar N, Murugaiyah V, Kamarulzaman EE, Yap BK, et al.
    Molecules, 2021 Aug 31;26(17).
    PMID: 34500740 DOI: 10.3390/molecules26175304
    Drug targeting is a progressive area of research with folate receptor alpha (FRα) receiving significant attention as a biological marker in cancer drug delivery. The binding affinity of folic acid (FA) to the FRα active site provides a basis for recognition of FRα. In this study, FA was conjugated to beta-cyclodextrin (βCD) and subjected to in silico analysis (molecular docking and molecular dynamics (MD) simulation (100 ns)) to investigate the affinity and stability for the conjugated system compared to unconjugated and apo systems (ligand free). Docking studies revealed that the conjugated FA bound into the active site of FRα with a docking score (free binding energy < -15 kcal/mol), with a similar binding pose to that of unconjugated FA. Subsequent analyses from molecular dynamics (MD) simulations, root mean square deviation (RMSD), root mean square fluctuation (RMSF), and radius of gyration (Rg) demonstrated that FA and FA-βCDs created more dynamically stable systems with FRα than the apo-FRα system. All systems reached equilibrium with stable RMSD values ranging from 1.9-2.4 Å and the average residual fluctuation values of the FRα backbone atoms for all residues (except for terminal residues ARG8, THR9, THR214, and LEU215) were less than 2.1 Å with a consistent Rg value of around 16.8 Å throughout the MD simulation time (0-100 ns). The conjugation with βCD improved the stability and decreased the mobility of all the residues (except residues 149-151) compared to FA-FRα and apo-FRα systems. Further analysis of H-bonds, binding free energy (MM-PBSA), and per residue decomposition energy revealed that besides APS81, residues HIS20, TRP102, HIS135, TRP138, TRP140, and TRP171 were shown to have more favourable energy contributions in the holo systems than in the apo-FRα system, and these residues might have a direct role in increasing the stability of holo systems.
    Matched MeSH terms: Folic Acid/chemistry*
  18. Sindhu SS
    Indian Pediatr, 1974 Dec;11(12):775-80.
    PMID: 4448540
    Matched MeSH terms: Folic Acid/blood*; Folic Acid Deficiency/epidemiology
  19. van Huizen AM, Menting SP, Gyulai R, Iversen L, van der Kraaij GE, Middelkamp-Hup MA, et al.
    JAMA Dermatol, 2022 May 01;158(5):561-572.
    PMID: 35353175 DOI: 10.1001/jamadermatol.2022.0434
    IMPORTANCE: A clear dosing regimen for methotrexate in psoriasis is lacking, and this might lead to a suboptimal treatment. Because methotrexate is affordable and globally available, a uniform dosing regimen could potentially optimize the treatment of patients with psoriasis worldwide.

    OBJECTIVE: To reach international consensus among psoriasis experts on a uniform dosing regimen for treatment with methotrexate in adult and pediatric patients with psoriasis and identify potential future research topics.

    DESIGN, SETTING, AND PARTICIPANTS: Between September 2020 and March 2021, a survey study with a modified eDelphi procedure that was developed and distributed by the Amsterdam University Medical Center and completed by 180 participants worldwide (55 [30.6%] resided in non-Western countries) was conducted in 3 rounds. The proposals on which no consensus was reached were discussed in a conference meeting (June 2021). Participants voted on 21 proposals with a 9-point scale (1-3 disagree, 4-6 neither agree nor disagree, 7-9 agree) and were recruited through the Skin Inflammation and Psoriasis International Network and European Academy of Dermatology and Venereology in June 2020. Apart from being a dermatologist/dermatology resident, there were no specific criteria for participation in the survey. The participants worked mainly at a university hospital (97 [53.9%]) and were experienced in treating patients with psoriasis with methotrexate (163 [91.6%] had more than 10 years of experience).

    MAIN OUTCOMES AND MEASURES: In a survey with eDelphi procedure, we tried to reach consensus on 21 proposals. Consensus was defined as less than 15% voting disagree (1-3). For the consensus meeting, consensus was defined as less than 30% voting disagree.

    RESULTS: Of 251 participants, 180 (71.7%) completed all 3 survey rounds, and 58 participants (23.1%) joined the conference meeting. Consensus was achieved on 11 proposals in round 1, 3 proposals in round 2, and 2 proposals in round 3. In the consensus meeting, consensus was achieved on 4 proposals. More research is needed, especially for the proposals on folic acid and the dosing of methotrexate for treating subpopulations such as children and vulnerable patients.

    CONCLUSIONS AND RELEVANCE: In this eDelphi consensus study, consensus was reached on 20 of 21 proposals involving methotrexate dosing in patients with psoriasis. This consensus may potentially be used to harmonize the treatment with methotrexate in patients with psoriasis.

    Matched MeSH terms: Folic Acid
  20. Ishak R, Hassan K
    PMID: 7777906
    A comparative study was done to determine the profile of vitamin B12 and folate status in Malaysians during two different periods. For the period of 1987/88, we analysed a total of 9,162 cases (inpatients) referred for vitamin B12 estimation and 10,290 cases for folate estimation. We found that 2.6% were vitamin B12 deficient and 31.2% were folate deficient. For the period of 1992/93, of the 9,962 cases assayed, 8.2% were found to be vitamin B12 deficient whereas 7.6% of the 10,355 cases referred were folate deficient. Vitamin B12 and folate were assayed either using microbiological or radioassays. These findings indicate that there appears to be a change in the status of both vitamin B12 and folate over the five year interval.
    Matched MeSH terms: Folic Acid Deficiency/complications; Folic Acid Deficiency/epidemiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links