Displaying all 18 publications

Abstract:
Sort:
  1. Ismail SI, Batzer JC, Harrington TC, Crous PW, Lavrov DV, Li H, et al.
    Mycologia, 2016 Mar-Apr;108(2):292-302.
    PMID: 26740537 DOI: 10.3852/15-036
    Members of the sooty blotch and flyspeck (SBFS) complex are epiphytic fungi in the Ascomycota that cause economically damaging blemishes of apples worldwide. SBFS fungi are polyphyletic, but approx. 96% of SBFS species are in the Capnodiales. Evolutionary origins of SBFS fungi remain unclear, so we attempted to infer their origins by means of ancestral state reconstruction on a phylogenetic tree built utilizing genes for the nuc 28S rDNA (approx. 830 bp from near the 59 end) and the second largest subunit of RNA polymerase II (RPB2). The analyzed taxa included the well-known genera of SBFS as well as non-SBFS fungi from seven families within the Capnodiales. The non-SBFS taxa were selected based on their distinct ecological niches, including plant-parasitic and saprophytic species. The phylogenetic analyses revealed that most SBFS species in the Capnodiales are closely related to plant-parasitic fungi. Ancestral state reconstruction provided strong evidence that plant-parasitic fungi were the ancestors of the major SBFS lineages. Knowledge gained from this study may help to better understand the ecology and evolution of epiphytic fungi.
    Matched MeSH terms: Fungi/genetics*
  2. Kok CM, Sieo CC, Tan HY, Saad WZ, Liang JB, Ho YW
    J Microbiol, 2013 Oct;51(5):700-3.
    PMID: 24173648 DOI: 10.1007/s12275-013-2540-z
    The effect of Leucaena leucocephala hybrid-Bahru (LLB), which contains a high concentration of condensed tannins, on cellulolytic rumen fungal population in goats was investigated using real-time PCR. The fungal population in goats fed LLB was inhibited during the first 10 days of feeding, but after 15 days of feeding, there was a tremendous increase of fungal population (157.0 μg/ml), which was about fourfold more than that in control goats (39.7 μg/ml). However, after this period, the fungal population decreased continuously, and at 30 days of feeding, the fungal population (50.6 μg/ml) was not significantly different from that in control goats (55.4 μg/ml).
    Matched MeSH terms: Fungi/genetics
  3. Mat Razali N, Cheah BH, Nadarajah K
    Int J Mol Sci, 2019 Jul 23;20(14).
    PMID: 31340492 DOI: 10.3390/ijms20143597
    Transposable elements (TEs) are agents of genetic variability in phytopathogens as they are a source of adaptive evolution through genome diversification. Although many studies have uncovered information on TEs, the exact mechanism behind TE-induced changes within the genome remains poorly understood. Furthermore, convergent trends towards bigger genomes, emergence of novel genes and gain or loss of genes implicate a TE-regulated genome plasticity of fungal phytopathogens. TEs are able to alter gene expression by revamping the cis-regulatory elements or recruiting epigenetic control. Recent findings show that TEs recruit epigenetic control on the expression of effector genes as part of the coordinated infection strategy. In addition to genome plasticity and diversity, fungal pathogenicity is an area of economic concern. A survey of TE distribution suggests that their proximity to pathogenicity genes TEs may act as sites for emergence of novel pathogenicity factors via nucleotide changes and expansion or reduction of the gene family. Through a systematic survey of literature, we were able to conclude that the role of TEs in fungi is wide: ranging from genome plasticity, pathogenicity to adaptive behavior in evolution. This review also identifies the gaps in knowledge that requires further elucidation for a better understanding of TEs' contribution to genome architecture and versatility.
    Matched MeSH terms: Fungi/genetics*
  4. Ho YW, Khoo IY, Tan SG, Abdullah N, Jalaludin S, Kudo H
    Microbiology (Reading), 1994 Jun;140 ( Pt 6):1495-504.
    PMID: 8081508
    Isozymes of 23 cultures of the anaerobic rumen fungi and seven cultures of aerobic chytridiomycete fungi were analysed by PAGE. A total of 14 isozyme loci were successfully typed by PAGE. They were peptidase A & C-1, peptidase A & C-2, peptidase D-1, peptidase D-2, malate dehydrogenase-1, malate dehydrogenase-2, esterase-1, esterase-2, malic enzyme-1, malic enzyme-2, isocitrate dehydrogenase, shikimate dehydrogenase, phosphoglucomutase and 6-phosphogluconate dehydrogenase. Isozyme analysis can be used for studying the genetic relationships among the different anaerobic rumen fungi and the aerobic chytridiomycete fungi and the isozyme characteristics can serve as additional taxonomic criteria in the classification of the anaerobic rumen fungi. A dendrogram based on the isozyme data demonstrated that the anaerobic rumen fungi formed a cluster, indicating a monophyletic group, distinctly separated from the aerobic chytridiomycete fungi. Piromyces communis and P. minutus showed a close relationship but P. spiralis showed a more distant relationship to both P. communis and P. minutus. Piromyces as a whole was more related to Caecomyces than to Neocallimastix. Orpinomyces was also found to be more related to Piromyces and Caecomyces than to Neocallimastix. Orpinomyces intercalaris C 70 from cattle showed large genetic variation from O. joyonii, indicating that it is a different species.
    Matched MeSH terms: Fungi/genetics
  5. Isa KNM, Jalaludin J, Elias SM, Than LTL, Jabbar MA, Saudi ASM, et al.
    Ecotoxicol Environ Saf, 2021 Sep 15;221:112430.
    PMID: 34147866 DOI: 10.1016/j.ecoenv.2021.112430
    The exposure of school children to indoor air pollutants has increased allergy and respiratory diseases. The objective of this study were to determine the toxicodynamic interaction of indoor pollutants exposure, biological and chemical with expression of adhesion molecules on eosinophil and neutrophil. A self-administered questionnaire, allergy skin test, and fractional exhaled nitric oxide (FeNO) analyser were used to collect information on health status, sensitization to allergens and respiratory inflammation, respectively among school children at age of 14 years. The sputum induced were analysed to determine the expression of CD11b, CD35, CD63 and CD66b on eosinophil and neutrophil by using flow cytometry technique. The particulate matter (PM2.5 and PM10), NO2, CO2, and formaldehyde, temperature, and relative humidity were measured inside the classrooms. The fungal DNA were extracted from settled dust collected from classrooms and evaluated using metagenomic techniques. We applied chemometric and regression in statistical analysis. A total of 1869 unique of operational taxonomic units (OTUs) of fungi were identified with dominated at genus level by Aspergillus (15.8%), Verrucoconiothyrium (5.5%), and Ganoderma (4.6%). Chemometric and regression results revealed that relative abundance of T. asahii were associated with down regulation of CD66b expressed on eosinophil, and elevation of FeNO levels in predicting asthmatic children with model accuracy of 63.6%. Meanwhile, upregulation of CD11b expressed on eosinophil were associated with relative abundance of A. clavatus and regulated by PM2.5. There were significant association of P. bandonii with upregulation of CD63 expressed on neutrophil and exposure to NO2. Our findings indicate that exposure to PM2.5, NO2, T. asahii, P.bandonii and A.clavatus are likely interrelated with upregulation of activation and degranulation markers on both eosinophil and neutrophil.
    Matched MeSH terms: Fungi/genetics*
  6. Hoenigl M, Salmanton-García J, Walsh TJ, Nucci M, Neoh CF, Jenks JD, et al.
    Lancet Infect Dis, 2021 Aug;21(8):e246-e257.
    PMID: 33606997 DOI: 10.1016/S1473-3099(20)30784-2
    With increasing numbers of patients needing intensive care or who are immunosuppressed, infections caused by moulds other than Aspergillus spp or Mucorales are increasing. Although antifungal prophylaxis has shown effectiveness in preventing many invasive fungal infections, selective pressure has caused an increase of breakthrough infections caused by Fusarium, Lomentospora, and Scedosporium species, as well as by dematiaceous moulds, Rasamsonia, Schizophyllum, Scopulariopsis, Paecilomyces, Penicillium, Talaromyces and Purpureocillium species. Guidance on the complex multidisciplinary management of infections caused by these pathogens has the potential to improve prognosis. Management routes depend on the availability of diagnostic and therapeutic options. The present recommendations are part of the One World-One Guideline initiative to incorporate regional differences in the epidemiology and management of rare mould infections. Experts from 24 countries contributed their knowledge and analysed published evidence on the diagnosis and treatment of rare mould infections. This consensus document intends to provide practical guidance in clinical decision making by engaging physicians and scientists involved in various aspects of clinical management. Moreover, we identify areas of uncertainty and constraints in optimising this management.
    Matched MeSH terms: Fungi/genetics
  7. Fahim Abbas M, Batool S, Khaliq S, Mubeen S, Azziz-Ud-Din, Ullah N, et al.
    PLoS One, 2021;16(10):e0257951.
    PMID: 34648523 DOI: 10.1371/journal.pone.0257951
    Loquat [Eriobotrya japonica (Thunb.) Lindl.] is an important fruit crop in Pakistan; however, a constant decline in its production is noted due biotic and abiotic stresses, particularly disease infestation. Fungal pathogens are the major disease-causing agents; therefore, their identification is necessary for devising management options. This study explored Taxila, Wah-Cantt, Tret, Chatar, Murree, Kalar-Kahar, Choa-Saidan-Shah and Khan-Pur districts in the Punjab and Khyber Paktoon Khawa (KPK) provinces of Pakistan to explore the diversity of fungal pathogens associated with loquat. The samples were collected from these districts and their microscopic characterizations were accomplished for reliable identification. Alternaria alternata, Curvularia lunata, Lasiodiplodia theobromae, Aspergilus flavis, Botrytis cinerea, Chaetomium globosum, Pestalotiopsis mangiferae and Phomopsis sp. were the fungal pathogens infesting loquat in the study area. The isolates of A. alternata and C. lunata were isolated from leaf spots and fruit rot, while the isolates of L. theobromae were associated with twig dieback. The remaining pathogens were allied with fruit rot. The nucleotide evidence of internal transcribed spacer (ITS) regions (ITS1, 5.8S, and ITS2) were computed from all the pathogens and submitted in the database of National Center for Biotechnology Information (NCBI). For multigene analysis, beta-tubulin (BT) gene and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) regions were explored for A. alternata and C. lunata isolates, respectively. The virulence scales of leaf spots, fruit rot, and twig dieback diseases of loquat were developed for the first time through this study. It is the first comprehensive study with morpho-molecular identification, and newly developed virulence scales of the fungal pathogens associated with loquat, which improves the understanding of these destructive diseases.
    Matched MeSH terms: Mitosporic Fungi/genetics
  8. Seena S, Duarte S, Pascoal C, Cássio F
    PLoS One, 2012;7(4):e35884.
    PMID: 22558256 DOI: 10.1371/journal.pone.0035884
    The worldwide-distributed aquatic fungus Articulospora tetracladia Ingold is a dominant sporulating species in streams of the Northwest Iberian Peninsula. To elucidate the genetic diversity of A. tetracladia, we analyzed isolates collected from various types of plant litter or foam in streams from North and Central Portugal and North Spain, between 2000 and 2010. Genetic diversity of these fungal populations was assessed by denaturing gradient gel electrophoresis (DGGE) fingerprints and by using ITS1-5.8S-ITS2 barcodes. Moreover, ITS1-5.8S-ITS2 barcodes of A. tetracladia reported in other parts of the world (Central Europe, United Kingdom, Canada, Japan and Malaysia) were retrieved from the National Center for Biotechnology (NCBI) and the National Institute of Technology and Evaluation Biological Resource Center (NBRC) to probe into genetic diversity of A. tetracladia. PCR-DGGE of ITS2 region of 50 Iberian fungal isolates distinguished eight operational taxonomic units (OTUs), which were similar to those obtained from neighboring trees based on ITS2 gene sequences. On the other hand, ITS1-5.8S-ITS2 barcodes of 68 fungal isolates yielded nine OTUs, but five fungal isolates were not assigned to any of these OTUs. Molecular diversity was highest for OTU-8, which included only European isolates. Two haplotypes were observed within OTU-8 and OTU-9, while only one haplotype was found within each of the remaining OTUs. Malaysia did not share haplotypes with other countries. Overall results indicate that, apart from the Malaysian genotypes, A. tetracladia genotypes were geographically widespread irrespective of sampling time, sites or substrates. Furthermore, PCR-DGGE appeared to be a rapid tool for assessing intraspecific diversity of aquatic hyphomycetes.
    Matched MeSH terms: Mitosporic Fungi/genetics*
  9. Ng KP, Soo-Hoo TS, Na SL, Tay ST, Hamimah H, Lim PC, et al.
    Mycopathologia, 2005 Jun;159(4):495-500.
    PMID: 15983734
    Hortaea werneckii is an environmental dematiaceous fungus found in the halophilic environment. It causes tinea nigra. We report the isolation of H. werneckii from blood and splenic abscess of two patients with acute myelomonocytic leukaemia. H. werneckii grew at room temperature but not at 37 degrees C, it was identified by biochemical tests, growth characteristics and the presence of conspicuous collarette intercalary on dividing yeast cells. The use of specific oligonucleotide primer Hor-F (5'-TGGACACCTTCA TAACTCTTG-3') and Hor-R (5'-TCACAACGCTTAGAGACGG-3') confirmed the two isolates were H. werneckii. The sequence for 281 nucleotide of HW299 and HW403 were 99% identical but differed only in one nucleotide. In vitro anti-fungal susceptibility testing showed that the isolates were resistant to amphotericin B and flucytosine.
    Matched MeSH terms: Mitosporic Fungi/genetics*
  10. Jeyaprakasam NK, Razak MF, Ahmad NA, Santhanam J
    Mycopathologia, 2016 Jun;181(5-6):397-403.
    PMID: 26847667 DOI: 10.1007/s11046-016-9984-8
    Although non-sporulating molds (NSM) are frequently isolated from patients and have been recognized as agents of pulmonary disease, their clinical significance in cutaneous specimens is relatively unknown. Therefore, this study aimed to identify NSM and to determine the keratinolytic activity of isolates from cutaneous sites. NSM isolates from clinical specimens such as skin, nail, and body fluids were identified based on their ribosomal DNA sequences. Of 17 NSM isolates (7 Ascomycota, 10 Basidiomycota), eleven were identified to species level while five were identified to the genus level. These include Schizophyllum commune, a known human pathogen, Phoma multirostrata, a plant pathogen, and Perenniporia tephropora, a saprophyte. To determine fungal pathogenicity, keratinolytic activity, a major virulence factor, was evaluated ex vivo using human nail samples by measuring dye release from keratin azure, for NSM along with pathogens (Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis and Fusarium spp.) and nonpathogenic (endophyte) fungi for comparison. This study showed that pathogenic fungi had the highest keratinolytic activity (7.13 ± 0.552 keratinase units) while the nonpathogenic endophytes had the lowest activity (2.37 ± 0.262 keratinase units). Keratinolytic activity of two Ascomycota NSM (Guignardia mangiferae and Hypoxylon sp.) and one Basidiomycota NSM (Fomitopsis cf. meliae) was equivalent to that of pathogenic fungi, while Xylaria feejeensis showed significantly higher activity (p 
    Matched MeSH terms: Fungi/genetics
  11. Wei J, Ren W, Wang L, Liu M, Tian X, Ding G, et al.
    J Sci Food Agric, 2020 Dec;100(15):5627-5636.
    PMID: 32712996 DOI: 10.1002/jsfa.10690
    BACKGROUND: Serofluid dish, a traditional Chinese fermented food, possesses unique flavors and health beneficial effects. These properties are likely due to the sophisticated metabolic networks during fermentation, which are mainly driven by microbiota. However, the exact roles of metabolic pathways and the microbial community during this process remain equivocal.

    RESULTS: Here, we investigated the microbial dynamics by next-generation sequencing, and outlined a differential non-targeted metabolite profiling in the process of serofluid dish fermentation using the method of hydrophilic interaction liquid chromatography column with ultra-high-performance liquid chromatography-quadruple time-of-flight mass spectrometry. Lactobacillus was the leading genus of bacteria, while Pichia and Issatchenkia were the dominant fungi. They all accumulated during fermentation. In total, 218 differential metabolites were identified, of which organic acids, amino acids, sugar and sugar alcohols, fatty acids, and esters comprised the majority. The constructed metabolic network showed that tricarboxylic acid cycle, urea cycle, sugar metabolism, amino acids metabolism, choline metabolism, and flavonoid metabolism were regulated by the fermentation. Furthermore, correlation analysis revealed that the leading fungi, Pichia and Issatchenkia, were linked to organic acids, amino acid and sugar metabolism, flavonoids, and several other flavor and functional components. Antibacterial tests indicated the antibacterial effect of serofluid soup against Salmonella and Staphylococcus.

    CONCLUSION: This work provides new insights into the complex microbial and metabolic networks during serofluid dish fermentation, and a theoretical basis for the optimization of its industrial production. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Fungi/genetics
  12. Tahir AA, Mohd Barnoh NF, Yusof N, Mohd Said NN, Utsumi M, Yen AM, et al.
    Microbes Environ, 2019 Jun 27;34(2):161-168.
    PMID: 31019143 DOI: 10.1264/jsme2.ME18117
    Oil palm empty fruit bunches (OPEFB) are the most abundant, inexpensive, and environmentally friendly lignocellulosic biomass in Malaysia. Investigations on the microbial diversity of decaying OPEFB may reveal microbes with complex enzymes that have the potential to enhance the conversion of lignocellulose into second-generation biofuels as well as the production of other value-added products. In the present study, fungal and bacterial diversities in decaying OPEFB were identified using Illumina MiSeq sequencing of the V3 region of the 16S rRNA gene and V4 region of the 18S rRNA gene. Fungal diversity in decaying OPEFB was dominated by the phylum Ascomycota (14.43%), while most of the bacterial sequences retrieved belonged to Proteobacteria (76.71%). Three bacterial strains isolated from decaying OPEFB, designated as S18, S20, and S36, appeared to grow with extracted OPEFB-lignin and Kraft lignin (KL) as the sole carbon source. 16S rRNA gene sequencing identified the 3 isolates as Paenibacillus sp.. The molecular weight distribution of KL before and after degradation showed significant depolymerization when treated with bacterial strains S18, S20, and S36. The presence of low-molecular-weight lignin-related compounds, such as vanillin and 2-methoxyphenol derivatives, which were detected by a GC-MS analysis, confirmed the KL-degrading activities of isolated Paenibacillus strains.
    Matched MeSH terms: Fungi/genetics
  13. Chan GF, Sinniah S, Idris TI, Puad MS, Abd Rahman AZ
    Pak J Biol Sci, 2013 Mar 01;16(5):208-18.
    PMID: 24175430
    Persistent superficial skin infection caused by multiple fungi is rarely reported. Recently, a number of fungi, both opportunistic and persistent in nature were isolated from the foot skin of a 24-year old male in Malaysia. The fungi were identified as Candida parapsilosis, Rhodotorula mucilaginosa, Phoma spp., Debaryomyces hansenii, Acremonium spp., Aureobasidium pullulans and Aspergillus spp., This is the first report on these opportunistic strains were co-isolated from a healthy individual who suffered from persistent foot skin infection which was diagnosed as athlete's foot for more than 12 years. Among the isolated fungi, C. parapsilosis has been an increasingly common cause of skin infections. R. mucilaginosa and D. hansenii were rarely reported in cases of skin infection. A. pullulans, an emerging fungal pathogen was also being isolated in this case. Interestingly, it was noted that C. parapsilosis, R. mucilaginosa, D. hansenii and A. pullulans are among the common halophiles and this suggests the association of halotolerant fungi in causing persistent superficial skin infection. This discovery will shed light on future research to explore on effective treatment for inhibition of pathogenic halophiles as well as to understand the interaction of multiple fungi in the progress of skin infection.
    Matched MeSH terms: Fungi/genetics*
  14. Iskandar NL, Zainudin NA, Tan SG
    J Environ Sci (China), 2011;23(5):824-30.
    PMID: 21790056
    Filamentous fungi are able to accumulate significant amount of metals from their environment. The potential of fungal biomass as agents for biosorption of heavy metals from contaminated sediments is currently receiving attention. In the present study, a total of 41 isolates of filamentous fungi obtained from the sediment of the Langat River, Selangor, Malaysia were screened for their tolerance and uptake capability of copper (Cu) and lead (Pb). The isolates were identified as Aspergillus niger, A. fumigatus, Trichoderma asperellum, Penicillium simplicissimum and P. janthinellum. A. niger and P. simplicissimum, were able to survive at 1000 mg/L of Cu(II) concentration on Potato Dextrose Agar (PDA) while for Pb, only A. niger survived at 5000 mg/L concentration. The results showed that A. niger, P. simplicissimum and T. asperellum have a better uptake capacity for Pb compared to Cu and the findings indicated promising biosorption of Cu and Pb by these filamentous fungi from aqueous solution. The present study was also determined the maximum removal of Cu(II) and Pb(II) that was performed by A. niger. The metal removal which occurred at Cu(II) 200 mg/L was (20.910 +/- 0.581) mg/g and at 250 mg/L of Pb(II) was (54.046 +/- 0.328) mg/g.
    Matched MeSH terms: Fungi/genetics
  15. Liew PW, Jong BC
    J Microbiol Biotechnol, 2008 May;18(5):815-20.
    PMID: 18633276
    Two culture-independent methods, namely ribosomal DNA libraries and denaturing gradient gel electrophoresis (DGGE), were adopted to examine the microbial community of a Malaysian light crude oil. In this study, both 16S and 18S rDNAs were PCR-amplified from bulk DNA of crude oil samples, cloned, and sequenced. Analyses of restriction fragment length polymorphism (RFLP) and phylogenetics clustered the 16S and 18S rDNA sequences into seven and six groups, respectively. The ribosomal DNA sequences obtained showed sequence similarity between 90 to 100% to those available in the GenBank database. The closest relatives documented for the 16S rDNAs include member species of Thermoincola and Rhodopseudomonas, whereas the closest fungal relatives include Acremonium, Ceriporiopsis, Xeromyces, Lecythophora, and Candida. Others were affiliated to uncultured bacteria and uncultured ascomycete. The 16S rDNA library demonstrated predomination by a single uncultured bacterial type by >80% relative abundance. The predomination was confirmed by DGGE analysis.
    Matched MeSH terms: Fungi/genetics
  16. Embong Z, Wan Hitam WH, Yean CY, Rashid NH, Kamarudin B, Abidin SK, et al.
    BMC Ophthalmol, 2008;8:7.
    PMID: 18445283 DOI: 10.1186/1471-2415-8-7
    The sensitivity and specificity of 18S rRNA polymerase chain reaction (PCR) in the detection of fungal aetiology of microbial keratitis was determined in thirty patients with clinical diagnosis of microbial keratitis.
    Matched MeSH terms: Fungi/genetics*
  17. Ejike UC, Chan CJ, Okechukwu PN, Lim RLH
    Crit Rev Biotechnol, 2020 Dec;40(8):1172-1190.
    PMID: 32854547 DOI: 10.1080/07388551.2020.1808581
    Fungal immunomodulatory proteins (FIPs) are fascinating small and heat-stable bioactive proteins in a distinct protein family due to similarities in their structures and sequences. They are found in fungi, including the fruiting bodies producing fungi comprised of culinary and medicinal mushrooms. Structurally, most FIPs exist as homodimers; each subunit consisting of an N-terminal α-helix dimerization and a C-terminal fibronectin III domain. Increasing numbers of identified FIPs from either different or same fungal species clearly indicates the growing research interests into its medicinal properties which include immunomodulatory, anti-inflammation, anti-allergy, and anticancer. Most FIPs increased IFN-γ production in peripheral blood mononuclear cells, potentially exerting immunomodulatory and anti-inflammatory effects by inhibiting overproduction of T helper-2 (Th2) cytokines common in an allergy reaction. Recently, FIP from Ganoderma microsporum (FIP-gmi) was shown to promote neurite outgrowth for potential therapeutic applications in neuro-disorders. This review discussed FIPs' structural and protein characteristics, their recombinant protein production for functional studies, and the recent advances in their development and applications as pharmaceutics and functional foods.
    Matched MeSH terms: Fungi/genetics
  18. Harun A, James RM, Lim SM, Abdul Majeed AB, Cole AL, Ramasamy K
    BMC Complement Altern Med, 2011 Sep 24;11:79.
    PMID: 21943123 DOI: 10.1186/1472-6882-11-79
    BACKGROUND: BACE1 was found to be the major β-secretase in neurons and its appearance and activity were found to be elevated in the brains of AD patients. Fungal endophytic extracts for BACE1 inhibitory activity and cytotoxicity against PC-12 (a rat pheochromocytoma with neuronal properties) and WRL68 (a non-tumorigenic human hepatic) were investigated.

    METHODS: Endophytes were isolated from plants collected from Kuala Pilah, Negeri Sembilan and the National Park, Pahang and the extracts were tested for BACE1 inhibition. For investigation of biological activity, the pure endophytic cultures were cultivated for 14 days on PDA plates at 28°C and underwent semipolar extraction with ethyl acetate.

    RESULTS: Of 212 endophytic extracts (1000 μg/ml), 29 exhibited more than 90% inhibition of BACE1 in the preliminary screening. Four extracts from isolates HAB16R13, HAB16R14, HAB16R18 and HAB8R24 identified as Cytospora rhizophorae were the most active with IC(50(BACE1)) values of less than 3.0 μg/ml. The most active extract HAB16R13 was shown to non-competitively inhibit BACE1 with K(i) value of 10.0 μg/ml. HAB16R13 was considered non-potent against PC-12 and WRL68 (IC(50(CT))) of 60.0 and 40.0 μg/ml, respectively).

    CONCLUSIONS: This first report on endophytic fungal extract with good BACE1 inhibitory activity demonstrates that more extensive study is required to uncover the potential of endophytes.

    Matched MeSH terms: Fungi/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links