Displaying all 17 publications

Abstract:
Sort:
  1. Alyasova AV, Amoev ZV, Shkola OO, Novikov DV, Selivanova SG, Novikov VV
    Sovrem Tekhnologii Med, 2022;14(3):22-26.
    PMID: 37064811 DOI: 10.17691/stm2022.14.3.03
    The aim of the study was to assess the capabilities of mRNA genes encoding CD16a (FCGR3A) and CD16b (FCGR3B) in tumor samples from patients with renal cancer, and characterize the tumor process in relation to clinical and morphological factors.

    MATERIALS AND METHODS: We used 125 tumor samples from patients with a histologically confirmed diagnosis of renal cancer T1-4N0-1M0-1. A method described by Chomczynski and Sacchi was used to isolate nucleic acids. The mRNA levels were determined using a reverse transcription polymerase chain reaction and calculated according to ΔΔCt formula, taking into account the reaction efficiency.

    RESULTS: mRNA of the FCGR3A gene was detected in all tumor tissue samples under study; in contrast, mRNA of the FCGR3B gene was found only in 92.0% (115/125) of cases. In tumors classified as pT1, the mRNA content of the FCGR3A gene was significantly lower than that in tumor samples of pT3 size. There was the significant increase in the mRNA content of both genes with an increase in tumor grade, as well as in the cases with distant metastases. The presence of a tumor thrombus in the inferior vena cava system was accompanied by a significant increase in the mRNA content of the FCGR3A gene.

    CONCLUSION: In tumor tissue samples from patients with clear cell renal cancer, the predominant production of the FCGR3A mRNA was observed in comparison with the FCGR3B mRNA. The revealed relationship of an increased amount of the FCGR3A mRNA and, in some cases, the FCGR3B mRNA with a number of clinical and morphological factors enables to consider the mRNA level of the genes as new monitoring biomarkers.

    Matched MeSH terms: GPI-Linked Proteins/genetics
  2. Hassan FW, Mohd N
    Spec Care Dentist, 2021 Jan;41(1):92-97.
    PMID: 33125720 DOI: 10.1111/scd.12537
    BACKGROUND/AIM: Polycythemia rubra vera (PRV) is a myeloproliferative disease, which is characterized by the proliferation of all three major hematopoietic groups (erythrocytes, leucocytes and platelets). This hematological condition presented with different clinical manifestations depending on the thrombohemorrhagic status of the patient. It is suggested patient with preexisting PRV may suffer complication during periodontal treatment. Thus, this case would therefore demonstrate periodontal management outcome in PRV patient.

    CASE PRESENTATION: A 60-year-old Malay gentleman presented to the Periodontic Clinic, Universiti Kebangsaan Malaysia. He was a known case of primary PRV for the past 5 years. Intraoral examination showed generalized periodontal deep pockets ranging from 5 to 10 mm. He was diagnosed as Stage III Grade C periodontitis. Nonsurgical periodontal therapy was provided, followed by surgical correction of residual periodontal deep pockets on teeth 17, 11, and 23. He was reviewed at 4-month intervals for supportive periodontal therapy after stabilization of his periodontal condition.

    CONCLUSION: Polycythemia rubra vera (PRV) patients should have preoperative therapeutic control for more than 4 months and have been treated with myelosuppressive agents prior to periodontal surgery. Good oral hygiene and periodical supportive periodontal therapy are the key factors for successful periodontal treatment outcomes in well-controlled PRV patients.

    Matched MeSH terms: GPI-Linked Proteins
  3. Shamsuddin SH, Jayne DG, Tomlinson DC, McPherson MJ, Millner PA
    Sci Rep, 2021 01 12;11(1):744.
    PMID: 33436840 DOI: 10.1038/s41598-020-80354-6
    Carcinoembryonic antigen (CEA) is the only blood based protein biomarker at present, used for preoperative screening of advanced colorectal cancer (CRC) patients to determine the appropriate curative treatments and post-surveillance screening for tumour recurrence. Current diagnostics for CRC detection have several limitations and development of a highly sensitive, specific and rapid diagnostic device is required. The majority of such devices developed to date are antibody-based and suffer from shortcomings including multimeric binding, cost and difficulties in mass production. To circumvent antibody-derived limitations, the present study focused on the development of Affimer proteins as a novel alternative binding reagent for CEA detection. Here, we describe the selection, from a phage display library, of Affimers specific to CEA protein. Characterization of three anti-CEA Affimers reveal that these bind specifically and selectively to protein epitopes of CEA from cell culture lysate and on fixed cells. Kinetic binding analysis by SPR show that the Affimers bind to CEA with high affinity and within the nM range. Therefore, they have substantial potential for used as novel affinity reagents in diagnostic imaging, targeted CRC therapy, affinity purification and biosensor applications.
    Matched MeSH terms: GPI-Linked Proteins/metabolism; GPI-Linked Proteins/chemistry
  4. Haridan US, Mokhtar U, Machado LR, Abdul Aziz AT, Shueb RH, Zaid M, et al.
    PLoS One, 2015;10(1):e0116791.
    PMID: 25594501 DOI: 10.1371/journal.pone.0116791
    The FCGR3 locus encoding the low affinity activating receptor FcγRIII, plays a vital role in immunity triggered by cellular effector and regulatory functions. Copy number of the genes FCGR3A and FCGR3B has previously been reported to affect susceptibility to several autoimmune diseases and chronic inflammatory conditions. However, such genetic association studies often yield inconsistent results; hence require assays that are robust with low error rate. We investigated the accuracy and efficiency in estimating FCGR3 CNV by comparing Sequenom MassARRAY and paralogue ratio test-restriction enzyme digest variant ratio (PRT-REDVR). In addition, since many genetic association studies of FCGR3B CNV were carried out using real-time quantitative PCR, we have also included the evaluation of that method's performance in estimating the multi-allelic CNV of FCGR3B. The qPCR assay exhibited a considerably broader distribution of signal intensity, potentially introducing error in estimation of copy number and higher false positive rates. Both Sequenom and PRT-REDVR showed lesser systematic bias, but Sequenom skewed towards copy number normal (CN = 2). The discrepancy between Sequenom and PRT-REDVR might be attributed either to batch effects noise in individual measurements. Our study suggests that PRT-REDVR is more robust and accurate in genotyping the CNV of FCGR3, but highlights the needs of multiple independent assays for extensive validation when performing a genetic association study with multi-allelic CNVs.
    Matched MeSH terms: GPI-Linked Proteins/genetics
  5. Azman NAN, Alhawarri MB, Rawa MSA, Dianita R, Gazzali AM, Nogawa T, et al.
    Molecules, 2020 Oct 04;25(19).
    PMID: 33020403 DOI: 10.3390/molecules25194545
    Seventeen methanol extracts from different plant parts of five different Cassia species, including C. timorensis, C. grandis, C. fistula, C. spectabilis, and C. alata were screened against acetylcholinesterase (AChE). C. timorensis extracts were found to exhibit the highest inhibition towards AChE whereby the leaf, stem, and flower methanol extracts showed 94-97% inhibition. As far as we are aware, C. timorensis is one of the least explored Cassia spp. for bioactivity. Further fractionation led to the identification of six compounds, isolated for the first time from C. timorensis: 3-methoxyquercetin (1), benzenepropanoic acid (2), 9,12,15-octadecatrienoic acid (3), β-sitosterol (4), stigmasterol (5), and 1-octadecanol (6). Compound 1 showed moderate inhibition towards AChE (IC50: 83.71 μM), while the other compounds exhibited poor to slightly moderate AChE inhibitory activity. Molecular docking revealed that the methoxy substitution of 1 formed a hydrogen bond with TYR121 at the peripheral anionic site (PAS) and the hydroxyl group at C5 formed a covalent hydrogen bond with ASP72. Additionally, the OH group at the C3' position formed an interaction with the protein at the acyl pocket (PHE288). This possibly explains the activity of 1 in blocking the entry of acetylcholine (ACh, the neurotransmitter), thus impeding the hydrolysis of ACh.
    Matched MeSH terms: GPI-Linked Proteins/chemistry
  6. Ruszymah BH, Izham BA, Heikal MY, Khor SF, Fauzi MB, Aminuddin BS
    Med J Malaysia, 2011 Dec;66(5):440-2.
    PMID: 22390097 MyJurnal
    Current development in the field of tissue engineering led to the idea of repairing and regenerating the respiratory airway through in vitro reconstruction using autologous respiratory epithelial (RE). To ensure the capability of proliferation, the stem cell property of RE cells from the nasal turbinate should be evaluated. Respiratory epithelial cells from six human nasal turbinates were harvested and cultured in vitro. The gene expression of FZD-9 and BST-1 were expressed in passage 2 (P2) and passage 4 (P4). The levels of expression were not significant between both passages. The RE cells exhibit the stem cell properties, which remains even after serial passaging.
    Matched MeSH terms: GPI-Linked Proteins/genetics; GPI-Linked Proteins/metabolism
  7. Younus HA, Hameed A, Mahmood A, Khan MS, Saeed M, Batool F, et al.
    Bioorg Chem, 2020 07;100:103827.
    PMID: 32402802 DOI: 10.1016/j.bioorg.2020.103827
    Medicinal importance of the sulfonylhydrazones is well-evident owing to their binding ability with zinc containing metalloenzymes. In the present study, we have synthesized different series of sulfonylhydrazones by using facile synthetic methods in good to excellent yield. All the successfully prepared sulfonylhydrazones were screened for ectonucleotidase (ALP & e5'NT) inhibitory activity. Among the chromen-2-one scaffold based sulfonylhydrazones, the compounds 7 was found to be most potent inhibitor for h-TNAP (human tissue non-specific alkaline phosphatase) and h-IAP (human intestinal alkaline phosphatase) with IC50 values of 1.02 ± 0.13 and 0.32 ± 0.0 3 µM respectively, compared with levamisole (IC50 = 25.2 ± 1.90 µM for h-TNAP) and l-phenylalanine (IC50 = 100 ± 3.00 µM for h-IAP) as standards. Further, the chromen-2-one based molecule 5a showed excellent activity against h-ecto 5'-NT (human ecto-5'-nucleotidase) with IC50 value of 0.29 ± 0.004 µM compared to standard, sulfamic acid (IC50 = 42.1 ± 7.8 µM). However, among the series of phenyl ring based sulfonylhydrazones, compound 9d was found to be most potent against h-TNAP and h-IAP with IC50 values of 0.85 ± 0.08 and 0.52 ± 0.03 µM, respectively. Moreover, in silico studies were also carried to demonstrate their putative binding with the target enzymes. The potent compounds 5a, 7, and 9d against different ectonucleotidases (h-ecto 5'-NT, h-TNAP, h-IAP) could potentially serve as lead for the development of new therapeutic agents.
    Matched MeSH terms: GPI-Linked Proteins/antagonists & inhibitors; GPI-Linked Proteins/metabolism
  8. Binti Kamaruddin NA, Fong LY, Tan JJ, Abdullah MNH, Singh Cheema M, Bin Yakop F, et al.
    Molecules, 2020 May 29;25(11).
    PMID: 32485974 DOI: 10.3390/molecules25112534
    Endothelial cell injury caused by reactive oxygen species (ROS) plays a critical role in the pathogenesis of cardiovascular diseases. Omentin, an adipocytokine that is abundantly expressed in visceral fat tissue, has been reported to possess anti-inflammatory and antidiabetic properties. However, endothelial protective effects of omentin against oxidative stress remain unclear. This study aimed to evaluate the protective effect of omentin against hydrogen peroxide (H2O2)-induced cell injury in human umbilical vein endothelial cells (HUVECs). Cytotoxicity and cytoprotective effects of omentin were evaluated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic activity of HUVECs was detected using Annexin-V/PI and Hoechst 33258 staining methods. Antioxidant activity of omentin was evaluated by measuring both reactive oxygen species (ROS) levels and glutathione peroxidase (GPx) activity. No cytotoxicity effect was observed in HUVECs treated with omentin alone at concentrations of 150 to 450 ng/ml. MTT assay showed that omentin significantly prevented the cell death induced by H2O2 (p < 0.001). Hoechst staining and flow cytometry also revealed that omentin markedly prevented H2O2-induced apoptosis. Moreover, omentin not only significantly inhibited ROS production (p < 0.01) but also significantly (p < 0.01) increased GPx activity in HUVECs. In conclusion, our data suggest that omentin may protect HUVECs from injury induced by H2O2.
    Matched MeSH terms: GPI-Linked Proteins/pharmacology
  9. Ishak MF, Chua KH, Asma A, Saim L, Aminuddin BS, Ruszymah BH, et al.
    Int J Pediatr Otorhinolaryngol, 2011 Jun;75(6):835-40.
    PMID: 21543123 DOI: 10.1016/j.ijporl.2011.03.021
    This study was aimed to see the difference between chondrocytes from normal cartilage compared to chondrocytes from microtic cartilage. Specific attentions were to characterize the growth of chondrocytes in terms of cell morphology, growth profile and RT-PCR analysis.
    Matched MeSH terms: GPI-Linked Proteins/genetics; GPI-Linked Proteins/metabolism
  10. Rahman SK, Ansari MA, Gaur P, Ahmad I, Chakravarty C, Verma DK, et al.
    Viruses, 2021 04 21;13(5).
    PMID: 33919410 DOI: 10.3390/v13050726
    To establish a productive infection in host cells, viruses often use one or multiple host membrane glycoproteins as their receptors. For Influenza A virus (IAV) such a glycoprotein receptor has not been described, to date. Here we show that IAV is using the host membrane glycoprotein CD66c as a receptor for entry into human epithelial lung cells. Neuraminidase (NA), a viral spike protein, binds to CD66c on the cell surface during IAV entry into the host cells. Lung cells overexpressing CD66c showed an increase in virus binding and subsequent entry into the cell. Upon comparison, CD66c demonstrated higher binding capacity than other membrane glycoproteins (EGFR and DC-SIGN) reported earlier to facilitate IAV entry into host cells. siRNA mediated knockdown of CD66c from lung cells inhibited virus binding on cell surface and entry into cells. Blocking CD66c by antibody on the cell surface resulted in decreased virus entry. We found that CD66c is a specific glycoprotein receptor for influenza A virus that did not affect entry of non-IAV RNA virus (Hepatitis C virus). Finally, IAV pre-incubated with recombinant CD66c protein when administered intranasally in mice showed decreased cytopathic effects in mice lungs. This publication is the first to report CD66c (Carcinoembryonic cell adhesion molecule 6 or CEACAM6) as a glycoprotein receptor for Influenza A virus.
    Matched MeSH terms: GPI-Linked Proteins/genetics; GPI-Linked Proteins/metabolism
  11. Jia, Ying Soo, Nur Ayub Mohd Ali, Aishath Azna Ali, Firdaus Hayati, Nornazirah Azizan, Andee Dzulkarnaen Zakaria, et al.
    MyJurnal
    Skeletal metastasis is a frequent complication of cancer resulting in significant morbidity as well as mortality. We highlight a case of a 73-year old gentleman with metastatic squamous cell carcinoma of the sternum. He denied dysphagia, shortness of breath, goitre, and presence of chronic non-healing ulcer. He was anaemic and carcinoembryonic antigen (CEA) was 18.7. Chest radiograph on lateral view showed a suspicious cortical irregularity. Computed tomography (CT) scan of thorax revealed an aggressive sternal lesion with soft tissue component. Ultrasound guided biopsy was performed and the biopsy was consistent with metastatic squamous cell carcinoma. Squamous cell carcinoma has a predilection to metastasize via haematogenous spread, but direct extension of tumour into the bone is not frequently seen. Finding the primary cause is utmost importance either via imaging modalities or invasive procedures. Isolated secondary lesion is extremely rare but unfortunate among defaulters. We discuss its diagnostic work-up and treatment options conserved to manage this condition.
    Matched MeSH terms: GPI-Linked Proteins
  12. Tang ELH, Tan NH, Fung SY, Tan CH
    Toxicon, 2019 Aug 22;169:91-102.
    PMID: 31445943 DOI: 10.1016/j.toxicon.2019.08.004
    The intraspecific geographical venom variations of Calloselasma rhodostoma from Malaysia (CR-M), Indonesia (CR-I), Thailand (CR-T) and Vietnam (CR-V) were investigated through 1D SDS-PAGE and nano-ESI-LCMS/MS. The venom antigenicity, procoagulant activities and neutralization using Thai C. rhodostoma Monovalent Antivenom (CRMAV) were also investigated. SDS-PAGE patterns of the venoms were relatively similar with minor variations. Proteomic analysis revealed that snake venom metalloproteinases (SVMPs, particularly P-I class), serine proteases (SVSPs) and snaclecs dominated the venom protein composition (68.96-81.80%), followed by L-amino acid oxidase (LAAO) and phospholipase A2 (PLA2) (7.37-11.08% and 5.18-13.81%, respectively), corroborating C. rhodostoma envenoming effects (hemorrhage, consumptive coagulopathy, thrombocytopenia and local tissue necrosis). Other proteins of lower abundances (2.82-9.13%) identified include cysteine-rich secretory proteins (CRISP), phospholipase B, phosphodiesterase, nerve growth factor, 5'-nucleotidase, aminopeptidase and hyaluronidase. All four venoms exhibited strong procoagulant effects which were neutralized by CRMAV to different extents. CRMAV immunoreactivity was high toward venoms of CR-M, CR-I and CR-T but relatively low for CR-V venom. Among the venom samples from different locales, CR-V venom proteome has the smallest SVMP composition while SVSP, PLA2 and phosphodiesterase were more abundant in the venom. These variations in C. rhodostoma venom protein composition could partly explain the differences seen in immunoreactivity. (198 words).
    Matched MeSH terms: GPI-Linked Proteins
  13. Agatonovic-Kustrin S, Kettle C, Morton DW
    Biomed Pharmacother, 2018 Oct;106:553-565.
    PMID: 29990843 DOI: 10.1016/j.biopha.2018.06.147
    An increase in dementia numbers and global trends in population aging across the world prompts the need for new medications to treat the complex biological dysfunctions, such as neurodegeneration associated with dementia. Alzheimer's disease (AD) is the most common form of dementia. Cholinergic signaling, which is important in cognition, is slowly lost in AD, so the first line therapy is to treat symptoms with acetylcholinesterase inhibitors to increase levels of acetylcholine. Out of five available FDA-approved AD medications, donepezil, galantamine and rivastigmine are cholinesterase inhibitors while memantine, a N-methyl d-aspartate (NMDA) receptor antagonist, blocks the effects of high glutamate levels. The fifth medication consists of a combination of donepezil and memantine. Although these medications can reduce and temporarily slow down the symptoms of AD, they cannot stop the damage to the brain from progressing. For a superior therapeutic effect, multi-target drugs are required. Thus, a Multi-Target-Directed Ligand (MTDL) strategy has received more attention by scientists who are attempting to develop hybrid molecules that simultaneously modulate multiple biological targets. This review highlights recent examples of the MTDL approach and fragment based strategy in the rational design of new potential AD medications.
    Matched MeSH terms: GPI-Linked Proteins/antagonists & inhibitors; GPI-Linked Proteins/metabolism; GPI-Linked Proteins/chemistry
  14. Rajandram R, Perumal K, Yap NY
    Transl Androl Urol, 2019 May;8(Suppl 2):S138-S146.
    PMID: 31236331 DOI: 10.21037/tau.2018.11.10
    Obesity is a recognized risk factor for renal cell carcinoma (RCC) the commonest form of kidney cancer. Both obesity and RCC are serious diseases with increasing incidence yearly. This review examined certain obesity associated measurements and adipokines as detection/prognostic indicators for RCC. The obesity related measurements such as body mass index (BMI), waist circumstance (WC), waist-hip ratio (WHR) in predicting RCC are valid when used in conjunction with other risk factors such as age and sex or with histological findings. The adipokine adiponectin holds promising outcomes as a predictive marker in assessing the risk of developing RCC. In addition, tissue leptin/leptin receptor may be a distinguishing marker for RCC subtypes. However, circulating leptin may not be a suitable detection or prognostic biomarker for RCC. The other less investigated adipokines; omentin, visfatin, apelin and resistin are also expressed in RCC but their prognostic capabilities are still inconclusive. BMI, WC and adipokines may be useful additions in a nomogram which includes TNM staging and pathological grading system to detect, confirm and follow-up RCC cases.
    Matched MeSH terms: GPI-Linked Proteins
  15. Hardiany NS, Yo EC, Ngadiono E, Wanandi SI
    Malays J Med Sci, 2019 Nov;26(6):35-45.
    PMID: 31908585 DOI: 10.21315/mjms2019.26.6.4
    Background: Glioblastoma multiforme (GBM) is the most malignant primary brain tumour and there is no definite cure. It has been suggested that there are significant interactions among mesenchymal stem cells (MSCs), their released factors and tumour cells that ultimately determine GBM's growth pattern. This study aims to analyse the expression of molecules involved in GBM cell apoptotic pathways following treatment with the MSC secretome.

    Methods: A conditioned medium of umbilical cord-derived MSCs (UCMSC-CM) was generated by culturing the cells on serum-free αMEM for 24 h. Following this, human GBM T98G cells were treated with UCMSC-CM for 24 h. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was then performed to measure the mRNA expression of survivin, caspase-9, TNF-related apoptosis-inducing ligand (TRAIL), DR4 and DcR1.

    Results: mRNA expression of caspase-9 in CM-treated T98G cells increased 1.6-fold (P = 0.017), whereas mRNA expression of survivin increased 3.5-fold (P = 0.002). On the other hand, TRAIL protein expression was upregulated (1.2-fold), whereas mRNA expression was downregulated (0.4-fold), in CM-treated cells. Moreover, there was an increase in the mRNA expression of both DR4 (3.5-fold) and DcR1 (1,368.5-fold) in CM-treated cells.

    Conclusion: The UCMSC-CM was able to regulate the expression of molecules involved in GBM cell apoptotic pathways. However, the expression of anti-apoptotic molecules was more upregulated than that of pro-apoptotic molecules.

    Matched MeSH terms: GPI-Linked Proteins
  16. Tong CK, Vellasamy S, Tan BC, Abdullah M, Vidyadaran S, Seow HF, et al.
    Cell Biol Int, 2011 Mar;35(3):221-6.
    PMID: 20946106 DOI: 10.1042/CBI20100326
    MSCs (mesenchymal stem cells) promise a great potential for regenerative medicine due to their unique properties of self-renewal, high plasticity, modulation of immune response and the flexibility for genetic modification. Therefore, the increasing demand for cellular therapy necessitates a larger-scale production of MSC; however, the technical and ethical issues had put a halt on it. To date, studies have shown that MSC could be derived from human UC (umbilical cord), which is once considered as clinical waste. We have compared the two conventional methods which are classic enzymatic digestion and explant method with our newly tailored enzymatic-mechanical disassociation method to generate UC-MSC. The generated UC-MSCs from the methods above were characterized based on their immunophenotyping, early embryonic transcription factors expression and mesodermal differentiation ability. Our results show that enzymatic-mechanical disassociation method increase the initial nucleated cell yield greatly (approximately 160-fold) and maximized the successful rate of UC-MSC generation. Enzymatic-mechanical disassociation-derived UC-MSC exhibited fibroblastic morphology and surface markers expression of CD105, CD73, CD29, CD90 and MHC class I. Furthermore, these cells constitutively express early embryonic transcription factors (Nanog, Oct-4, Sox-2 and Rex-1), as confirmed by RT-PCR, indicating their multipotency and high self-renewal capacity. They are also capable of differentiating into osteoblasts and adipocytes when given an appropriate induction. The present study demonstrates a new and efficient approach in generating MSC from UC, hence serving as ideal alternative source of mesenchymal stem cell for clinical and research use.
    Matched MeSH terms: GPI-Linked Proteins/metabolism
  17. Kumar M, Tata MD, Sahid Nik Lah NA
    Ann Med Surg (Lond), 2021 May;65:102353.
    PMID: 34007446 DOI: 10.1016/j.amsu.2021.102353
    Introduction: Signet cell carcinoma (SRCC)of the rectum is a rare subtype of the rectum cancer which accounts for only 0.8% of colorectal cancer in adolescents and young adults (AYAs) which spread aggressively to other organs and peritoneum.

    Case presentation: We present a case of 15-year-old boy from rural area, presented with chronic diarrhea and per rectal bleeding for 3 months. The diagnosis was determined by colonoscope which revealed a fungating mass identified at 10cm from anal verge. Histological examination confirmed diagnosis of signet ring cell adenocarcinoma. CT scan of the abdomen showed thickening involving the recto-sigmoid colon and rectal mass, without evidence of distant metastatic disease. The patient's carcinoembryonic antigen level was within the normal range. He underwent a colostomy and was subjected to neoadjuvant CCRT and surgery.

    Discussion: This CASE highlights the importance and challenges in achieving early diagnosis and surgical intervention of signet-ring cell carcinoma in adolescents, as most cases are detected at an advanced stage coupled with the scarcity of information on these rarer subtypes which leads to a poor prognosis.

    Conclusion: In managing Signet cell carcinoma of the colorectal, physician have to know that it has a poor prognosis in patients of any age. However, in young teenagers delayed diagnosis and treatment option are narrowed to palliative management. Genetic profiling of family members and similar environment population may be a key to early detection.

    Matched MeSH terms: GPI-Linked Proteins
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links