Clustered regularly interspaced short palindromic repeats (CRISPR) have established itself as a frontier technology in genetic engineering. Researchers have successfully used the CRISPR/Cas system as precise gene editing tools and have further expanded their scope beyond both imaging and diagnostic applications. The most prominent utility of CRISPR is its capacity for gene therapy, serving as the contemporary, disease-modifying drug at the genetic level of human medical disorders. Correcting these diseases using CRISPR-based gene editing has developed to the extent of preclinical trials and possible patient treatments. A major impediment in actualizing this is the complications associated with in vivo delivery of the CRISPR/Cas complex. Currently, only the viral vectors (e.g., lentivirus) and non-viral encapsulation (e.g., lipid particles, polymer-based, and gold nanoparticles) techniques have been extensively reviewed, neglecting the efficiency of direct delivery. However, the direct delivery of CRISPR/Cas for in vivo gene editing therapies is an intricate process with numerous drawbacks. Hence, this paper discusses in detail both the need and the strategies that can potentially improve the direct delivery aspects of CRISPR/Cas biomolecules for gene therapy of human diseases. Here, we focus on enhancing the molecular and functional features of the CRISPR/Cas system for targeted in vivo delivery such as on-site localization, internalization, reduced immunogenicity, and better in vivo stability. We additionally emphasize the CRISPR/Cas complex as a multifaceted, biomolecular vehicle for co-delivery with therapeutic agents in targeted disease treatments. The delivery formats of efficient CRISPR/Cas systems for human gene editing are also briefly elaborated.
Viral infections are a common cause of morbidity worldwide. The emergence of Coronavirus Disease 2019 (COVID-19) has led to more attention to viral infections and finding novel therapeutics. The CRISPR-Cas9 system has been recently proposed as a potential therapeutic tool for the treatment of viral diseases. Here, we review the research progress in the use of CRISPR-Cas technology for treating viral infections, as well as the strategies for improving the delivery of this gene-editing tool in vivo. Key challenges that hinder the widespread clinical application of CRISPR-Cas9 technology are also discussed, and several possible directions for future research are proposed.
Atherosclerosis represents one of the major causes of death globally. The high mortality rates and limitations of current therapeutic modalities have urged researchers to explore potential alternative therapies. The clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) system is commonly deployed for investigating the genetic aspects of Atherosclerosis. Besides, advances in CRISPR/Cas system has led to extensive options for researchers to study the pathogenesis of this disease. The recent discovery of Cas9 variants, such as dCas9, Cas9n, and xCas9 have been established for various applications, including single base editing, regulation of gene expression, live-cell imaging, epigenetic modification, and genome landscaping. Meanwhile, other Cas proteins, such as Cas12 and Cas13, are gaining popularity for their applications in nucleic acid detection and single-base DNA/RNA modifications. To date, many studies have utilized the CRISPR/Cas9 system to generate disease models of atherosclerosis and identify potential molecular targets that are associated with atherosclerosis. These studies provided proof-of-concept evidence which have established the feasibility of implementing the CRISPR/Cas system in correcting disease-causing alleles. The CRISPR/Cas system holds great potential to be developed as a targeted treatment for patients who are suffering from atherosclerosis. This review highlights the advances in CRISPR/Cas systems and their applications in establishing pathogenetic and therapeutic role of specific genes in atherosclerosis.