Displaying all 13 publications

Abstract:
Sort:
  1. Chong CW, Pearce DA, Convey P
    Front Microbiol, 2015;6:1058.
    PMID: 26483777 DOI: 10.3389/fmicb.2015.01058
    Recent advances in knowledge of patterns of biogeography in terrestrial eukaryotic organisms have led to a fundamental paradigm shift in understanding of the controls and history of life on land in Antarctica, and its interactions over the long term with the glaciological and geological processes that have shaped the continent. However, while it has long been recognized that the terrestrial ecosystems of Antarctica are dominated by microbes and their processes, knowledge of microbial diversity and distributions has lagged far behind that of the macroscopic eukaryote organisms. Increasing human contact with and activity in the continent is leading to risks of biological contamination and change in a region whose isolation has protected it for millions of years at least; these risks may be particularly acute for microbial communities which have, as yet, received scant recognition and attention. Even a matter apparently as straightforward as Protected Area designation in Antarctica requires robust biodiversity data which, in most parts of the continent, remain almost completely unavailable. A range of important contributing factors mean that it is now timely to reconsider the state of knowledge of Antarctic terrestrial prokaryotes. Rapid advances in molecular biological approaches are increasingly demonstrating that bacterial diversity in Antarctica may be far greater than previously thought, and that there is overlap in the environmental controls affecting both Antarctic prokaryotic and eukaryotic communities. Bacterial dispersal mechanisms and colonization patterns remain largely unaddressed, although evidence for regional evolutionary differentiation is rapidly accruing and, with this, there is increasing appreciation of patterns in regional bacterial biogeography in this large part of the globe. In this review, we set out to describe the state of knowledge of Antarctic prokaryote diversity patterns, drawing analogy with those of eukaryote groups where appropriate. Based on our synthesis, it is clear that spatial patterns of Antarctic prokaryotes can be unique at local scales, while the limited evidence available to date supports the group exhibiting overall regional biogeographical patterns similar to the eukaryotes. We further consider the applicability of the concept of "functional redundancy" for the Antarctic microbial community and highlight the requirements for proper consideration of their important and distinctive roles in Antarctic terrestrial ecosystems.
    Matched MeSH terms: Geological Phenomena
  2. Douglas I
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1725-38.
    PMID: 11605617
    Investigations of land management impacts on hydrology are well developed in South-East Asia, having been greatly extended by national organizations in the last two decades. Regional collaborative efforts, such as the ASEAN-US watershed programme, have helped develop skills and long-running monitoring programmes. Work in different countries is significant for particular aspects: the powerful effects of both cyclones and landsliding in Taiwan, the significance of lahars in Java, of small-scale agriculture in Thailand and plantation establishment in Malaysia. Different aid programmes have contributed specialist knowledge such as British work on reservoir sedimentation, Dutch, Swedish and British work on softwood plantations and US work in hill-tribe agriculture. Much has been achieved through individual university research projects, including PhD and MSc theses. The net result is that for most countries there is now good information on changes in the rainfall-run-off relationship due to forest disturbance or conversion, some information on the impacts on sediment delivery and erosion of hillslopes, but relatively little about the dynamics and magnitude of nutrient losses. Improvements have been made in the ability to model the consequences of forest conversion and of selective logging and exciting prospects exist for the development of better predictions of transfer of water from the hillslopes to the stream channels using techniques such as multilevel modelling. Understanding of the processes involved has advanced through the detailed monitoring made possible at permanent field stations such as that at Danum Valley, Sabah.
    Matched MeSH terms: Geological Phenomena
  3. Pradhan B, Chaudhari A, Adinarayana J, Buchroithner MF
    Environ Monit Assess, 2012 Jan;184(2):715-27.
    PMID: 21509515 DOI: 10.1007/s10661-011-1996-8
    In this paper, an attempt has been made to assess, prognosis and observe dynamism of soil erosion by universal soil loss equation (USLE) method at Penang Island, Malaysia. Multi-source (map-, space- and ground-based) datasets were used to obtain both static and dynamic factors of USLE, and an integrated analysis was carried out in raster format of GIS. A landslide location map was generated on the basis of image elements interpretation from aerial photos, satellite data and field observations and was used to validate soil erosion intensity in the study area. Further, a statistical-based frequency ratio analysis was carried out in the study area for correlation purposes. The results of the statistical correlation showed a satisfactory agreement between the prepared USLE-based soil erosion map and landslide events/locations, and are directly proportional to each other. Prognosis analysis on soil erosion helps the user agencies/decision makers to design proper conservation planning program to reduce soil erosion. Temporal statistics on soil erosion in these dynamic and rapid developments in Penang Island indicate the co-existence and balance of ecosystem.
    Matched MeSH terms: Geological Phenomena*
  4. Koohpeyma HR, Vakili AH, Moayedi H, Panjsetooni A, Nazir R
    ScientificWorldJournal, 2013;2013:587462.
    PMID: 24459437 DOI: 10.1155/2013/587462
    Internal erosion is known as the most important cause of dam failure after overtopping. It is important to improve the erosion resistance of the erodible soil by selecting an effective technique along with the reasonable costs. To prevent internal erosion of embankment dams the use of chemical stabilizers that reduce the soil erodibility potential is highly recommended. In the present study, a lignin-based chemical, known as lignosulfonate, is used to improve the erodibility of clayey sand specimen. The clayey sand was tested in various hydraulic heads in terms of internal erosion in its natural state as well as when it is mixed with the different percentages of lignosulfonate. The results show that erodibility of collected clayey sand is very high and is dramatically reduced by adding lignosulfonate. Adding 3% of lignosulfonate to clayey sand can reduce the coefficient of soil erosion from 0.01020 to 0.000017. It is also found that the qualitative erodibility of stabilized soil with 3% lignosulfonate is altered from the group of extremely rapid to the group of moderately slow.
    Matched MeSH terms: Geological Phenomena
  5. Gillmore G, Gilbertson D, Grattan J, Hunt C, McLaren S, Pyatt B, et al.
    Ecotoxicol Environ Saf, 2005 Feb;60(2):213-27.
    PMID: 15546638
    This reconnaissance study of radon concentrations in the Great Cave of Niah in Sarawak shows that in relatively deep pits and trenches in surficial deposits largely covered by protective shelters with poor ventilation, excavators are working in a micro-environment in which radon concentrations at the ground surface can exceed those of the surrounding area by a factor of > x 2. Although radon concentrations in this famous cave are low by world standards (alpha track-etch results ranging from 100 to 3075 Bq m(-3)), they still may pose a health risk to both excavators (personal dosemeter readings varied from 0.368 to 0.857 mSv for 60 days of work) and cave occupants (1 yr exposure at 15 h per day with an average radon level of 608 Bq m(-3) giving a dose of 26.42 mSv). The data here presented also demonstrate that there is considerable local variation in radon levels in such environments as these.
    Matched MeSH terms: Geological Phenomena
  6. Abu-Jaber N, Hess JW, Howcroft W
    Ground Water, 2001 4 5;39(2):223-9.
    PMID: 11286069
    Multi-year instrumental records for input, throughflow and output waters of the Lilburn Cave system provide control on denudation rates as they respond to seasonal and spatial variability. Data suggest that maximum denudation is in the late fall and early winter. This is when non-snowmelt discharge is at its maximum. At lower discharge rates the volume of water moving through the cave system is the limiting control on the volume of denudation. During periods of snowmelt the limiting control is the rate at which the calcite dissolves. This is probably the result of water flowing through wider channels during these times. Based on instrumental measurements, there is considerable variation in terms of where denudation occurs inside the cave. The loci of dissolution change from year to year. This is to be expected in the dynamic environment of the cave where materials shift routinely. This variability should be studied over longer periods of time in order to more fully understand its extent. The relatively small area of carbonate exposure relative to the area of the drainage basin gives rise to relatively high denudation rates. The carbonate is being removed at a rate of about 5000 metric tons per year, or at about 830 mm/y. This is about five times the rate reported in the humid karst regions of Malaysia. This information indicates that the relative proportion of carbonate in the drainage basin needs to be considered when trying to estimate denudation in other areas.
    Matched MeSH terms: Geological Phenomena
  7. Douglas I, Bidin K, Balamurugan G, Chappell NA, Walsh RP, Greer T, et al.
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1749-61.
    PMID: 11605619
    Ten years' hydrological investigations at Danum have provided strong evidence of the effects of extremes of drought, as in the April 1992 El Niño southern oscillation event, and flood, as in January 1996. The 1.5 km2 undisturbed forest control catchment experienced a complete drying out of the stream for the whole 1.5 km of defined channel above the gauging station in 1992, but concentrated surface flow along every declivity from within a few metres of the catchment divide after the exceptional rains of 19 January 1996. Under these natural conditions, erosion is episodic. Sediment is discharged in pulses caused by storm events, collapse of debris dams and occasional landslips. Disturbance by logging accentuates this irregular regime. In the first few months following disturbance, a wave of sediment is moved by each storm, but over subsequent years, rare events scour sediment from bare areas, gullies and channel deposits. The spatial distribution of sediment sources changes with time after logging, as bare areas on slopes are revegetated and small gullies are filled with debris. Extreme storm events, as in January 1996, cause logging roads to collapse, with landslides leading to surges of sediment into channels, reactivating the pulsed sediment delivery by every storm that happened immediately after logging. These effects are not dampened out with increasing catchment scale. Even the 721 km2 Sungai Segama has a sediment yield regime dominated by extreme events, the sediment yield in that single day on 19 January 1996 exceeding the annual sediment load in several previous years. In a large disturbed catchment, such road failures and logging-activity-induced mass movements increase the mud and silt in floodwaters affecting settlements downstream. Management systems require long-term sediment reduction strategies. This implies careful road design and good water movement regulation and erosion control throughout the logging process.
    Matched MeSH terms: Geological Phenomena
  8. Ramli AT, Rahman AT, Lee MH
    Appl Radiat Isot, 2003 Nov-Dec;59(5-6):393-405.
    PMID: 14622942
    A statistical prediction of terrestrial gamma radiation dose rate has been performed, covering the Kota Tinggi district of Peninsular Malaysia. The prediction has been based on geological features and soil types. The purpose of this study is to provide a methodology to statistically predict the gamma radiation dose rate with minimum surveying in an area. Results of statistical predictions using the hypothesis test were compared with the actual dose rate obtained by measurements.
    Matched MeSH terms: Geological Phenomena
  9. Zarcinas BA, Ishak CF, McLaughlin MJ, Cozens G
    Environ Geochem Health, 2004 Dec;26(4):343-57.
    PMID: 15719158
    In a reconnaisance soil geochemical and plant survey undertaken to study the heavy metal uptake by major food crops in Malaysia, 241 soils were analysed for cation exchange capacity (CEC), organic carbon (C), pH, electrical conductivity (EC) and available phosphorus (P) using appropriate procedures. These soils were also analysed for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) using aqua regia digestion, together with 180 plant samples using nitric acid digestion. Regression analysis between the edible plant part and aqua regia soluble soil As, Cd, Cr, Cu, Hg, Ni, Pb and Zn concentrations sampled throughout Peninsular Malaysia, indicated a positive relationship for Pb in all the plants sampled in the survey (R2 = 0.195, p < 0.001), for Ni in corn (R2 = 0.649, p < 0.005), for Cu in chili (R2 = 0.344, p < 0.010) and for Zn in chili (R2 = 0.501, p < 0.001). Principal component analysis of the soil data suggested that concentrations of Co, Ni, Pb and Zn were strongly correlated with concentrations of Al and Fe, which is suggestive of evidence of background variations due to changes in soil mineralogy. Thus the evidence for widespread contamination of soils by these elements through agricultural activities is not strong. Chromium was correlated with soil pH and EC, Na, S, and Ca while Hg was not correlated with any of these components, suggesting diffuse pollution by aerial deposition. However As, Cd, Cu were strongly associated with organic matter and available and aqua regia soluble soil P, which we attribute to inputs in agricultural fertilisers and soil organic amendments (e.g. manures, composts).
    Matched MeSH terms: Geological Phenomena
  10. Garba NN, Ramli AT, Saleh MA, Sanusi SM, Gabdo HT
    Isotopes Environ Health Stud, 2016 Jun;52(3):214-8.
    PMID: 26540360 DOI: 10.1080/10256016.2016.1095189
    Measurements of the environmental terrestrial gamma radiation dose rate (TGRD) in each district of Kelantan state, Malaysia, were carried out using a portable hand-held radiation survey meter and global positioning system. The measurements were done based on geology and soil types of the area. The mean TGRD was found to be 209 nGy h(-1). Few areas of relatively enhanced activity were observed in Pasir Mas, Tanah Merah and Jeli districts, which have a mean TGRD between 300 and 500 nGy h(-1). An isodose map of the area was produced using ArcGIS software version 9.3.
    Matched MeSH terms: Geological Phenomena
  11. Ramli AT, Hussein AW, Lee MH
    Appl Radiat Isot, 2001 Feb;54(2):327-33.
    PMID: 11200896
    Measurements of environmental terrestrial gamma radiation dose-rate (TGRD) have been made in Johore, Malaysia. The focus is on determining a relationship between geological type and TGRD levels. Data were compared using the one way analysis of variance (ANOVA), in some instances revealing significant differences between TGRD measurements and the underlying geological structure.
    Matched MeSH terms: Geological Phenomena
  12. Rusli R, Haque MM, Afghari AP, King M
    Accid Anal Prev, 2018 Oct;119:80-90.
    PMID: 30007211 DOI: 10.1016/j.aap.2018.07.006
    Road safety in rural mountainous areas is a major concern as mountainous highways represent a complex road traffic environment due to complex topology and extreme weather conditions and are associated with more severe crashes compared to crashes along roads in flatter areas. The use of crash modelling to identify crash contributing factors along rural mountainous highways suffers from limitations in data availability, particularly in developing countries like Malaysia, and related challenges due to the presence of excess zero observations. To address these challenges, the objective of this study was to develop a safety performance function for multi-vehicle crashes along rural mountainous highways in Malaysia. To overcome the data limitations, an in-depth field survey, in addition to utilization of secondary data sources, was carried out to collect relevant information including roadway geometric factors, traffic characteristics, real-time weather conditions, cross-sectional elements, roadside features, and spatial characteristics. To address heterogeneity resulting from excess zeros, three specialized modelling techniques for excess zeros including Random Parameters Negative Binomial (RPNB), Random Parameters Negative Binomial - Lindley (RPNB-L) and Random Parameters Negative Binomial - Generalized Exponential (RPNB-GE) were employed. Results showed that the RPNB-L model outperformed the other two models in terms of prediction ability and model fit. It was found that heavy rainfall at the time of crash and the presence of minor junctions along mountainous highways increase the likelihood of multi-vehicle crashes, while the presence of horizontal curves along a steep gradient, the presence of a passing lane and presence of road delineation decrease the likelihood of multi-vehicle crashes. Findings of this study have significant implications for road safety along rural mountainous highways, particularly in the context of developing countries.
    Matched MeSH terms: Geological Phenomena
  13. Kura NU, Ramli MF, Ibrahim S, Sulaiman WN, Aris AZ
    Environ Sci Pollut Res Int, 2014;21(11):7047-64.
    PMID: 24532282 DOI: 10.1007/s11356-014-2598-0
    In this study, geophysics, geochemistry, and geostatistical techniques were integrated to assess seawater intrusion in Kapas Island due to its geological complexity and multiple contamination sources. Five resistivity profiles were measured using an electric resistivity technique. The results reveal very low resistivity <1 Ωm, suggesting either marine clay deposit or seawater intrusion or both along the majority of the resistivity images. As a result, geochemistry was further employed to verify the resistivity evidence. The Chadha and Stiff diagrams classify the island groundwater into Ca-HCO3, Ca-Na-HCO3, Na-HCO3, and Na-Cl water types, with Ca-HCO3 as the dominant. The Mg(2+)/Mg(2+)+Ca(2+), HCO3 (-)/anion, Cl(-)/HCO3 (-), Na(+)/Cl(-), and SO4 (2-)/Cl(-) ratios show that some sampling sites are affected by seawater intrusion; these sampling sites fall within the same areas that show low-resistivity values. The resulting ratios and resistivity values were then used in the geographical information system (GIS) environment to create the geostatistical map of individual indicators. These maps were then overlaid to create the final map showing seawater-affected areas. The final map successfully delineates the area that is actually undergoing seawater intrusion. The proposed technique is not area specific, and hence, it can work in any place with similar completed characteristics or under the influence of multiple contaminants so as to distinguish the area that is truly affected by any targeted pollutants from the rest. This information would provide managers and policy makers with the knowledge of the current situation and will serve as a guide and standard in water research for sustainable management plan.
    Matched MeSH terms: Geological Phenomena
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links