Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Lim LL, Chow E, Chan JCN
    Nat Rev Endocrinol, 2023 Mar;19(3):151-163.
    PMID: 36446898 DOI: 10.1038/s41574-022-00776-2
    Patients with type 2 diabetes mellitus (T2DM) can have multiple comorbidities and premature mortality due to atherosclerotic cardiovascular disease, hospitalization with heart failure and/or chronic kidney disease. Traditional drugs that lower glucose, such as metformin, or that treat high blood pressure and blood levels of lipids, such as renin-angiotensin-system inhibitors and statins, have organ-protective effects in patients with T2DM. Amongst patients with T2DM treated with these traditional drugs, randomized clinical trials have confirmed the additional cardiorenal benefits of sodium-glucose co-transporter 2 inhibitors (SGLT2i), glucagon-like peptide 1 receptor agonists (GLP1RA) and nonsteroidal mineralocorticoid receptor antagonists. The cardiorenal benefits of SGLT2i extended to patients with heart failure and/or chronic kidney disease without T2DM, whereas incretin-based therapy (such as GLP1RA) reduced cardiovascular events in patients with obesity and T2DM. However, considerable care gaps exist owing to insufficient detection, therapeutic inertia and poor adherence to these life-saving medications. In this Review, we discuss the complex interconnections of cardiorenal-metabolic diseases and strategies to implement evidence-based practice. Furthermore, we consider the need to conduct clinical trials combined with registers in specific patient segments to evaluate existing and emerging therapies to address unmet needs in T2DM.
    Matched MeSH terms: Glucagon-Like Peptide-1 Receptor/therapeutic use; Glucagon-Like Peptide-1 Receptor/agonists
  2. Lee SWH, Chen WS, Sellappans R, Md Sharif SB, Metzendorf MI, Lai NM
    Cochrane Database Syst Rev, 2023 Jul 12;7(7):CD013178.
    PMID: 37435938 DOI: 10.1002/14651858.CD013178.pub2
    BACKGROUND: Fasting during Ramadan is obligatory for adult Muslims, except those who have a medical illness. Many Muslims with type 2 diabetes (T2DM) choose to fast, which may increase their risks of hypoglycaemia and dehydration.

    OBJECTIVES: To assess the effects of interventions for people with type 2 diabetes fasting during Ramadan.

    SEARCH METHODS: We searched CENTRAL, MEDLINE, PsycINFO, CINAHL, WHO ICTRP and ClinicalTrials.gov (29 June 2022) without language restrictions.

    SELECTION CRITERIA: Randomised controlled trials (RCTs) conducted during Ramadan that evaluated all pharmacological or behavioural interventions in Muslims with T2DM.

    DATA COLLECTION AND ANALYSIS: Two authors screened and selected records, assessed risk of bias and extracted data independently. Discrepancies were resolved by a third author. For meta-analyses we used a random-effects model, with risk ratios (RRs) for dichotomous outcomes and mean differences (MDs) for continuous outcomes with their associated 95% confidence intervals (CIs). We assessed the certainty of evidence using the GRADE approach.

    MAIN RESULTS: We included 17 RCTs with 5359 participants, with a four-week study duration and at least four weeks of follow-up. All studies had at least one high-risk domain in the risk of bias assessment. Four trials compared dipeptidyl-peptidase-4 (DPP-4) inhibitors with sulphonylurea. DPP-4 inhibitors may reduce hypoglycaemia compared to sulphonylureas (85/1237 versus 165/1258, RR 0.53, 95% CI 0.41 to 0.68; low-certainty evidence). Serious hypoglycaemia was similar between groups (no events were reported in two trials; 6/279 in the DPP-4 versus 4/278 in the sulphonylurea group was reported in one trial, RR 1.49, 95% CI 0.43 to 5.24; very low-certainty evidence). The evidence was very uncertain about the effects of DPP-4 inhibitors on adverse events other than hypoglycaemia (141/1207 versus 157/1219, RR 0.90, 95% CI 0.52 to 1.54) and HbA1c changes (MD -0.11%, 95% CI -0.57 to 0.36) (very low-certainty evidence for both outcomes). No deaths were reported (moderate-certainty evidence). Health-related quality of life (HRQoL) and treatment satisfaction were not evaluated. Two trials compared meglitinides with sulphonylurea. The evidence is very uncertain about the effect on hypoglycaemia (14/133 versus 21/140, RR 0.72, 95% CI 0.40 to 1.28) and HbA1c changes (MD 0.38%, 95% CI 0.35% to 0.41%) (very low-certainty evidence for both outcomes). Death, serious hypoglycaemic events, adverse events, treatment satisfaction and HRQoL were not evaluated. One trial compared sodium-glucose co-transporter-2 (SGLT-2) inhibitors with sulphonylurea. SGLT-2 may reduce hypoglycaemia compared to sulphonylurea (4/58 versus 13/52, RR 0.28, 95% CI 0.10 to 0.79; low-certainty evidence). The evidence was very uncertain for serious hypoglycaemia (one event reported in both groups, RR 0.90, 95% CI 0.06 to 13.97) and adverse events other than hypoglycaemia (20/58 versus 18/52, RR 1.00, 95% CI 0.60 to 1.67) (very low-certainty evidence for both outcomes). SGLT-2 inhibitors result in little or no difference in HbA1c (MD 0.27%, 95% CI -0.04 to 0.58; 1 trial, 110 participants; low-certainty evidence). Death, treatment satisfaction and HRQoL were not evaluated. Three trials compared glucagon-like peptide 1 (GLP-1) analogues with sulphonylurea. GLP-1 analogues may reduce hypoglycaemia compared to sulphonylurea (20/291 versus 48/305, RR 0.45, 95% CI 0.28 to 0.74; low-certainty evidence). The evidence was very uncertain for serious hypoglycaemia (0/91 versus 1/91, RR 0.33, 95% CI 0.01 to 7.99; very low-certainty evidence). The evidence suggests that GLP-1 analogues result in little to no difference in adverse events other than hypoglycaemia (78/244 versus 55/255, RR 1.50, 95% CI 0.86 to 2.61; very low-certainty evidence), treatment satisfaction (MD -0.18, 95% CI -3.18 to 2.82; very low-certainty evidence) or change in HbA1c (MD -0.04%, 95% CI -0.45% to 0.36%; 2 trials, 246 participants; low-certainty evidence). Death and HRQoL were not evaluated. Two trials compared insulin analogues with biphasic insulin. The evidence was very uncertain about the effects of insulin analogues on hypoglycaemia (47/256 versus 81/244, RR 0.43, 95% CI 0.13 to 1.40) and serious hypoglycaemia (4/131 versus 3/132, RR 1.34, 95% CI 0.31 to 5.89) (very low-certainty evidence for both outcomes). The evidence was very uncertain for the effect of insulin analogues on adverse effects other than hypoglycaemia (109/256 versus 114/244, RR 0.83, 95% CI 0.44 to 1.56; very low-certainty evidence), all-cause mortality (1/131 versus 0/132, RR 3.02, 95% CI 0.12 to 73.53; very low-certainty evidence) and HbA1c changes (MD 0.03%, 95% CI -0.17% to 0.23%; 1 trial, 245 participants; very low-certainty evidence). Treatment satisfaction and HRQoL were not evaluated. Two trials compared telemedicine with usual care. The evidence was very uncertain about the effect of telemedicine on hypoglycaemia compared with usual care (9/63 versus 23/58, RR 0.42, 95% CI 0.24 to 0.74; very low-certainty evidence), HRQoL (MD 0.06, 95% CI -0.03 to 0.15; very low-certainty evidence) and HbA1c change (MD -0.84%, 95% CI -1.51% to -0.17%; very low-certainty evidence). Death, serious hypoglycaemia, AEs other than hypoglycaemia and treatment satisfaction were not evaluated. Two trials compared Ramadan-focused patient education with usual care. The evidence was very uncertain about the effect of Ramadan-focused patient education on hypoglycaemia (49/213 versus 42/209, RR 1.17, 95% CI 0.82 to 1.66; very low-certainty evidence) and HbA1c change (MD -0.40%, 95% CI -0.73% to -0.06%; very low-certainty evidence). Death, serious hypoglycaemia, adverse events other than hypoglycaemia, treatment satisfaction and HRQoL were not evaluated. One trial compared drug dosage reduction with usual care. The evidence is very uncertain about the effect of drug dosage reduction on hypoglycaemia (19/452 versus 52/226, RR 0.18, 95% CI 0.11 to 0.30; very low-certainty evidence). No participants experienced adverse events other than hypoglycaemia during the study (very low-certainty evidence). Death, serious hypoglycaemia, treatment satisfaction, HbA1c change and HRQoL were not evaluated.

    AUTHORS' CONCLUSIONS: There is no clear evidence of the benefits or harms of interventions for individuals with T2DM who fast during Ramadan. All results should be interpreted with caution due to concerns about risk of bias, imprecision and inconsistency between studies, which give rise to low- to very low-certainty evidence. Major outcomes, such as mortality, health-related quality of life and severe hypoglycaemia, were rarely evaluated. Sufficiently powered studies that examine the effects of various interventions on these outcomes are needed.

    Matched MeSH terms: Glucagon-Like Peptide 1
  3. Lok KH, Wareham NJ, Nair RS, How CW, Chuah LH
    Pharmacol Res, 2022 Jun;180:106237.
    PMID: 35487405 DOI: 10.1016/j.phrs.2022.106237
    The significant growth in type 2 diabetes mellitus (T2DM) prevalence strikes a common threat to the healthcare and economic systems globally. Despite the availability of several anti-hyperglycaemic agents in the market, none can offer T2DM remission. These agents include the prominent incretin-based therapy such as glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 inhibitors that are designed primarily to promote GLP-1R activation. Recent interest in various therapeutically useful gastrointestinal hormones in T2DM and obesity has surged with the realisation that enteroendocrine L-cells modulate the different incretins secretion and glucose homeostasis, reflecting the original incretin definition. Targeting L-cells offers promising opportunities to mimic the benefits of bariatric surgery on glucose homeostasis, bodyweight management, and T2DM remission. Revising the fundamental incretin theory is an essential step for therapeutic development in this area. Therefore, the present review explores enteroendocrine L-cell hormone expression, the associated nutrient-sensing mechanisms, and other physiological characteristics. Subsequently, enteroendocrine L-cell line models and the latest L-cell targeted therapies are reviewed critically in this paper. Bariatric surgery, pharmacotherapy and new paradigm of L-cell targeted pharmaceutical formulation are discussed here, offering both clinician and scientist communities a new common interest to push the scientific boundary in T2DM therapy.
    Matched MeSH terms: Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptide 1/metabolism
  4. Sharma AK, Thanikachalam PV, Rajput SK
    Biomed Pharmacother, 2016 Feb;77:120-8.
    PMID: 26796275 DOI: 10.1016/j.biopha.2015.12.015
    Type-2 diabetes mellitus (T2DM) is the chronic metabolic disorder which provokes several pitfall signalling. Though, a series of anti-diabetic drugs are available in the market but T2DM is still a huge burden on the developed and developing countries. Numerous studies and survey predict the associated baleful circumstances in near future due to incessant increase in this insidious disorder. The novelty of recent explored anti-diabetic drugs including glitazone, glitazaar and gliflozines seems to be vanished due to their associated toxic side effects. Brown and Dryburgh (1970) isolated an intestinal amino acid known as gastric inhibitory peptide (GIP) which had insulinotropic activity. Subsequently in 1985, another incretin glucagon likes peptide 1 (GLP-1) having potent insulinotropic properties was discovered by Schmidt and his co-workers. On the basis of results' obtained by Phase III Harmony program FDA approved (14 April, 2014) new GLP-1 agonist 'Albiglutide (ALB)', in addition to exiting components Exenatide (Eli Lilly, 2005) and Liraglutide (Novo Nordisk, 2010). ALB stimulates the release of protein kinase A (PKA) via different mechanisms which ultimately leads to increase in intracellular Ca(2+) levels. This increased intracellular Ca(2+) releases insulin vesicle from β-cells. In-addition, ALB being resistant to degradation by dipeptidyl peptidase-4 (DPP-4) and has longer half life. DPP-4 can significantly degrade the level of GLP-1 agonist by hydrolysis. In spite of potent anti-hypergycemic activity, ALB has pleiotropic action of improving cardiovascular physiology. In light of these viewpoints we reveal the individual pharmacological profile of ALB and the critical analyse about its future perspective in present review.
    Matched MeSH terms: Glucagon-Like Peptide 1/analogs & derivatives*; Glucagon-Like Peptide 1/metabolism; Glucagon-Like Peptide 1/pharmacokinetics; Glucagon-Like Peptide 1/pharmacology; Glucagon-Like Peptide 1/therapeutic use
  5. Verma RK, Sriramaneni R, Pandey M, Chaudhury H, Gorain B, Gupta G
    Panminerva Med, 2018 Dec;60(4):224-225.
    PMID: 29856185 DOI: 10.23736/S0031-0808.18.03479-1
    Matched MeSH terms: Glucagon-Like Peptide-1 Receptor/agonists*; Glucagon-Like Peptide 1/analogs & derivatives; Glucagon-Like Peptide 1/metabolism*; Glucagon-Like Peptide 1/therapeutic use
  6. Shaik MM, Gan SH, Kamal MA
    CNS Neurol Disord Drug Targets, 2014 Mar;13(2):283-9.
    PMID: 24074446 DOI: 10.2174/18715273113126660181
    Cognitive decline is a debilitating feature of Alzheimer's disease (AD). The causes leading to such impairment are still poorly understood and effective treatments for AD are still unavailable. Type 2 diabetes mellitus (T2DM) has been identified as a risk factor for AD due to desensitisation of insulin receptors in the brain. Recent studies have suggested that epigenetic mechanisms may also play a pivotal role in the pathogenesis of both AD and T2DM. This article describes the correlation between AD and T2DM and provides the insights to the epigenetics of AD. Currently, more research is needed to clarify the exact role of epigenetic regulation in the course and development of AD and also in relation to insulin. Research conducted especially in the earlier stages of the disease could provide more insight into its underlying pathophysiology to help in early diagnosis and the development of more effective treatment strategies.
    Matched MeSH terms: Glucagon-Like Peptide 1/genetics; Glucagon-Like Peptide 1/metabolism
  7. Vethakkan SR, Walters JM, Gooley JL, Boston RC, Kay TW, Goodman DJ, et al.
    Transplantation, 2014 Jan 27;97(2):e9-11.
    PMID: 24434489 DOI: 10.1097/01.TP.0000437565.15965.67
    Matched MeSH terms: Glucagon-Like Peptide 1/pharmacology
  8. Yap MKK, Misuan N
    PMID: 30417596 DOI: 10.1111/bcpt.13169
    Type II diabetes mellitus (T2DM) is a chronic non-communicable disease due to abnormal insulin actions causing uncontrolled hyperglycaemia. The treatment for T2DM, for instance, metformin and incretin mimetic, mainly focuses on the restoration of insulin sensitivity and secretion. Exendin-4 is a short incretin-mimetic peptide consisting of 39 amino acids. It is discovered in the venom of Heloderma suspectum as a full agonist for the glucagon-like peptide 1 (GLP-1) receptor and produces insulinotropic effects. It is more resistant to enzymatic degradation by dipeptidyl-peptidase-4 and has a longer half-life than the endogenous GLP-1; thus, it is further developed as an incretin hormone analogue used to treat T2DM. The helical region of the peptide first interacts with the extracellular N-terminal domain (NTD) of GLP-1 receptor while the C-terminal extension containing the tryptophan cage further enhances its binding affinity. After binding to the NTD of the receptor, it may cause the receptor to switch from its auto-inhibited state of the receptor to its auto-activated state. Exendin-4 enhances the physiological functions of β-cells and the up-regulation of GLP-1 receptors, thus reducing the plasma glucose levels. Moreover, exendin-4 has also been found to ameliorate neuropathy, nephropathy and ventricular remodelling. The therapeutic effects of exendin-4 have also been extrapolated into several clinical trials. Although exendin-4 has a reasonable subcutaneous bioavailability, its half-life is rather short. Therefore, several modifications have been undertaken to improve its pharmacokinetics and insulinotropic potency. This review focuses on the pharmacology of exendin-4 and the structure-function relationships of exendin-4 with GLP-1 receptor. The review also highlights some challenges and future directions in the improvement of exendin-4 as an anti-diabetic drug.
    Matched MeSH terms: Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptide 1
  9. Abdul Hakim BN, Yahya HM, Shahar S, Abdul Manaf Z, Damanhuri H
    PMID: 31766283 DOI: 10.3390/ijerph16224464
    Little is known about the effects of manipulating sequence of fruit consumption during a meal in suppressing an individual's appetite. Therefore, we investigate the effects of the sequence of fruit intake on satiety and blood glucose in a group of 17 healthy, young male adults. This intervention study repeatedly measured the effects of fruit intake (120 g red apple) before and after a meal and control (no fruit). Ad libitum test meal was weighed before and after a meal. Subjective appetite rating and appetite-related hormones were assessed at regular time intervals. The satiety score was significantly higher for fruit intake before a meal followed by after a meal and control (p < 0.05). Eating fruit before a meal reduced 18.5% (166 kcal) subsequent energy intake compared to control (p < 0.05). Fruit intake before a meal had a significantly higher incremental area under the curve (iAUC) of Glucagon-like peptide 1 (GLP-1), compared to after a meal (p < 0.05). There were no differences in plasma changes of ghrelin, Cholecystokinin 8 (CCK8), or blood glucose in all sessions. Consuming fruit before a meal potentially enhanced satiety. Further research is required to confirm both short- and long-term effects of the sequence of fruit intake on appetite regulation in a wider population.
    Matched MeSH terms: Glucagon-Like Peptide 1/blood
  10. Hamad F, Elnour AA, Elamin A, Mohamed S, Yousif I, Don J, et al.
    Curr Diabetes Rev, 2021;17(3):280-292.
    PMID: 32867644 DOI: 10.2174/1573399816999200821164129
    BACKGROUND: The major cardiovascular outcome trials on glucagon-like peptide one-receptor agonists have examined its effect on hospitalization of subjects with heart failure; however, very limited trials have been conducted on subjects with reduced left ventricular ejection fraction (r- LVEF) as a primary outcome.

    OBJECTIVE: We have conducted a systematic review of two major (FIGHT and LIVE) placebo-controlled trials of liraglutide and its clinical effect on the ejection fraction of subjects with heart failure.

    METHODS: Medline data was retrieved for trials involving liraglutide from 2012 to 2020. The inclusion criteria for trials were: subjects with or without type 2 diabetes mellitus (T2DM), subjects with heart failure with rLVEF, major trials (phase II or III) on liraglutide, trials included liraglutide with defined efficacy primary outcome of patients with heart failure with rLVEF. The search was limited to the English language, whereby two trials [FIGHT and LIVE] had been included and two trials were excluded due to different primary outcomes. Participants (541) had been randomized for either liraglutide or placebo for 24 weeks.

    RESULTS: In the FIGHT trial the primary intention-to-treat, sensitivity, and diabetes subgroup analyses have shown no significant between-group difference in the global rank scores (mean rank of 146 in the liraglutide group versus 156 in the placebo group; Wilcoxon rank-sum P=.31), number of deaths, re-hospitalizations for heart failure, or the composite of death or change in NT-pro BNP level (P= .94). In the LIVE trial, the change in the left ventricular ejection fraction (LVEF) from baseline to week 24 was not significantly different between treatment groups. The overall discontinuation rate of liraglutide was high in the FIGHT trial (29%, 86) as compared to that in the LIVE trial (11.6%, 28).

    CONCLUSION: FIGHT and LIVE trials have demonstrated that liraglutide use in subjects with heart failure and rLVEF was implicated with an increased adverse risk of heart failure-related outcomes.

    Matched MeSH terms: Glucagon-Like Peptide-1 Receptor
  11. Elnaem MH, Mansour NO, Nahas AF, Baraka MA, Elkalmi R, Cheema E
    Int J Gen Med, 2020;13:1395-1409.
    PMID: 33324086 DOI: 10.2147/IJGM.S285191
    Background: This study aims to discuss, summarize and compare the renal outcomes associated with non-insulin antidiabetic (AD) pharmacotherapy prescribed for patients with type 2 diabetes mellitus (T2DM).

    Methods: A systematic search using predefined search terms in three scholarly databases, ScienceDirect, Google Scholar, and PubMed, was conducted. Original research articles published in the English language between 2012 and 2020 that reported renal outcomes associated with the use of non-insulin AD pharmacotherapy were eligible for inclusion. Review articles, meta-analysis studies, and conference proceedings were excluded. A study-specific data extraction form was designed to extract the author's name, country, publication year, study design, study population, objectives, key findings, and conclusions. A narrative review of the key findings that focused on renal outcomes and renal safety issues was conducted.

    Results: Of the 18,872 results identified through the initial search, a total of 32 articles were included in this review. Of these, 18 of the included articles reported the renal outcomes of newer antidiabetic medications, eg, SGLT2 inhibitors and GLP-1 agonists. Eight studies focussed on the well-established antidiabetic medications, eg, metformin and sulphonylureas. The review reported three main types of the clinical impact of the prescribed AD on the renal outcomes: "renoprotective effects", "no additional risk" and "associated with a decline in renal parameters". Seventeen studies reported the renoprotective effects of AD, including SGLT2i studies (n=8), GLP1 studies (n=6), and DPP4i studies (n=3). The reported renoprotective effects included slowing down the GFR decline, improving albuminuria, and reducing renal adverse events. The "no additional risk" impact was reported in eight studies, including DPP4i studies (n=3), two SGLT2i studies (n=2), metformin studies (n=2), and one study involving pioglitazone. Furthermore, seven studies highlighted the "associated with a decline in renal parameters" effect. Of these, three involved SGLT2i, two with metformin, and one for each DPP4i and sulphonylurea.

    Conclusion: More than half of the studies included in this review supported the renoprotective effects associated with the use of AD medications, particularly GLP-1A, SGLT2i, and some of the DPP4i. Further studies involving patients with various stages of chronic kidney disease (CKD) are required to compare AD medications' renal effects, particularly the newer agents.

    Matched MeSH terms: Glucagon-Like Peptide 1
  12. Rasouli M, Abbasi S, Sarsaifi K, Hani H, Ahmad Z, Omar AR
    Appl Biochem Biotechnol, 2014 Jan;172(1):394-404.
    PMID: 24081707 DOI: 10.1007/s12010-013-0514-6
    Enteroendocrine cells are the largest population of hormone-producing cells in the body and play important roles in many aspects of body functions. The enteroendocrine cell population is divided into different subpopulations that secrete different hormones and peptides. Characterization of each subpopulation is particularly useful for analyzing the cellular mechanisms responsible for specific cell types. Therefore, the necessity of a pure cell line for a specific study purpose was the important motivation for the separation of cell lines for each subpopulation of enteroendocrine cells. The present research introduces a method for the isolation of L-cells, one of the important subpopulations of enteroendocrine cells. The antibiotic selection method was conducted in order to isolate the L-cells from a heterogonous population of intestinal cell line. In this method, a neomycin resistance gene (as selected marker) was expressed under the control of a specific promoter of L-cells. After transfection of manipulated plasmid, only the cells which determine the specific promoter and express neomycin resistance protein would be able to survive under Geneticin antibiotic treatment condition. In order to confirm that the isolated cells were L-cells, reverse transcriptase polymerase chain reaction (PCR) and quantitative PCR assays were performed. Based on the results, the isolated cells were pure L-cells that could be able to express specific mRNA of L-cells efficiently. This technique provides a unique method for the isolation and purification of any cell line. The purified isolated L-cells by this method can be used for future studies and for analyzing cellular mechanisms that involve L-cells' functions.
    Matched MeSH terms: Glucagon-Like Peptide 1/genetics
  13. Zaharudin N, Tullin M, Pekmez CT, Sloth JJ, Rasmussen RR, Dragsted LO
    Clin Nutr, 2021 Mar;40(3):830-838.
    PMID: 32917417 DOI: 10.1016/j.clnu.2020.08.027
    BACKGROUND & AIMS: Seaweed including brown seaweeds with rich bioactive components may be efficacious for a glycaemic management strategy and appetite control. We investigated the effects of two brown edible seaweeds, Laminaria digitata (LD) and Undaria pinnatifida (UP), on postprandial glucose metabolism and appetite following a starch load in a human meal study.

    METHODS: Twenty healthy subjects were enrolled in a randomized, 3-way, blinded cross-over trial. The study was registered under ClinicalTrials.gov Identifier no. NCT00123456. At each test day, the subjects received one of three meals comprising 30 g of starch with 5 g of LD or UP or an energy-adjusted control meal containing pea protein. Fasting and postprandial blood glucose, insulin, C-peptide and glucagon-like peptide-1 (GLP-1) concentrations were measured. Subjective appetite sensations were scored using visual analogue scales (VAS).

    RESULTS: Linear mixed model (LMM) analysis showed a lower blood glucose, insulin and C-peptide response following the intake of LD and UP, after correction for body weight. Participants weighing ≤ 63 kg had a reduced glucose response compared to control meal between 40 and 90 min both following LD and UP meals. Furthermore, LMM analysis for C-peptide showed a significantly lower response after intake of LD. Compared to the control meal, GLP-1 response was higher after the LD meal, both before and after the body weight adjustment. The VAS scores showed a decreased appetite sensation after intake of the seaweeds. Ad-libitum food intake was not different three hours after the seaweed meals compared to control.

    CONCLUSIONS: Concomitant ingestion of brown seaweeds may help improving postprandial glycaemic and appetite control in healthy and normal weight adults, depending on the dose per body weight.

    CLINICAL TRIAL REGISTRY NUMBER: Clinicaltrials.gov (ID# NCT02608372).

    Matched MeSH terms: Glucagon-Like Peptide 1/blood
  14. Robert SA, Rohana AG, Shah SA, Chinna K, Wan Mohamud WN, Kamaruddin NA
    Obes Res Clin Pract, 2015 May-Jun;9(3):301-4.
    PMID: 25870084 DOI: 10.1016/j.orcp.2015.03.005
    We examined the effects of liraglutide, a glucagon-like peptide-1 analogue on appetite and plasma ghrelin in non-diabetic obese participants with subclinical binge eating (BE). Forty-four obese BE participants (mean age: 34±9 years, BMI: 35.9±4.2kg/m(2)) were randomly assigned to intervention or control groups for 12 weeks. All participants received standard advice for diet and exercise. Binge eating score, ghrelin levels and other anthropometric variables were evaluated at baseline and at the end of the study. Participants who received liraglutide showed significant improvement in binge eating, accompanied by reduction in body weight, BMI, waist circumference, systolic blood pressure, fasting glucose and total cholesterol. Ghrelin levels were significantly increased which may potentially diminish the weight loss effects of liraglutide beyond the intervention.
    Matched MeSH terms: Glucagon-Like Peptide 1/analogs & derivatives; Glucagon-Like Peptide 1/agonists
  15. Mansur SA, Mieczkowska A, Bouvard B, Flatt PR, Chappard D, Irwin N, et al.
    J Cell Physiol, 2015 Dec;230(12):3009-18.
    PMID: 26016732 DOI: 10.1002/jcp.25033
    Type 1 diabetes mellitus is associated with a high risk for bone fractures. Although bone mass is reduced, bone quality is also dramatically altered in this disorder. However, recent evidences suggest a beneficial effect of the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) pathways on bone quality. The aims of the present study were to conduct a comprehensive investigation of bone strength at the organ and tissue level; and to ascertain whether enzyme resistant GIP or GLP-1 mimetic could be beneficial in preventing bone fragility in type 1 diabetes mellitus. Streptozotocin-treated mice were used as a model of type 1 diabetes mellitus. Control and streptozotocin-diabetic animals were treated for 21 days with an enzymatic-resistant GIP peptide ([D-Ala(2) ]GIP) or with liraglutide (each at 25 nmol/kg bw, ip). Bone quality was assessed at the organ and tissue level by microCT, qXRI, 3-point bending, qBEI, nanoindentation, and Fourier-transform infrared microspectroscopy. [D-Ala2]GIP and liraglutide treatment did prevent loss of whole bone strength and cortical microstructure in the STZ-injected mice. However, tissue material properties were significantly improved in STZ-injected animals following treatment with [D-Ala2]GIP or liraglutide. Treatment of STZ-diabetic mice with [D-Ala(2) ]GIP or liraglutide was capable of significantly preventing deterioration of the quality of the bone matrix. Further studies are required to further elucidate the molecular mechanisms involved and to validate whether these findings can be translated to human patients.
    Matched MeSH terms: Glucagon-Like Peptide 1/analogs & derivatives*; Glucagon-Like Peptide 1/pharmacology
  16. Azlina MF, Nafeeza MI, Khalid BA
    Asia Pac J Clin Nutr, 2005;14(4):358-65.
    PMID: 16326642
    Rats exposed to stress developed various changes in the gastrointestinal tract and hormones. The present study was designed to compare the impact of tocopherol and tocotrienol on changes that influence gastric and hormonal parameters important in maintaining gastric mucosal integrity in rats exposed to restrain stress. These include gastric acidity, gastric tissue content of parameters such as malondialdehyde, prostaglandin (PGE(2)), serum levels of gastrin and glucagon-like peptide-1 (GLP-1). Sixty male Sprague-Dawley rats (200-250 g) were randomly divided into three equal sized groups, a control group which received a normal rat diet (RC) and two treatment groups each receiving a vitamin deficient diet with oral supplementation of either tocopherol (TF) or tocotrienol (TT) at 60 mg/kg body weight. Blood samples were taken from half the number of rats (non-stressed group) after a treatment period of 28 days before they were killed. The remaining half was subjected to experimental restraint-stress, at 2 hours daily for 4 consecutive days (stressed groups), on the fourth day, blood samples were taken and the rats killed. The findings showed that the gastric acid concentration and serum gastrin level in stressed rats were significantly (P<0.05) reduced compared to the non-stressed rats in the control and TF groups. However, the gastric acidity and gastrin levels in the TT group were comparable in stressed and non-stressed rats. These findings suggest that tocotrienol is able to preserve the gastric acidity and serum gastrin level which are usually altered in stressed conditions. The PGE(2) content and the plasma GLP-1 level were, however, comparable in all stressed and non-stressed groups indicating that these parameters were not altered in stress and that supplementation with TF or TT had no effect on the gastric PGE2 content or the GLP-1 level. The malondialdehyde, an indicator of lipid peroxidation was higher from gastric tissues in the stressed groups compared to the non-stressed groups. These findings implicated that free radicals may play a role in the development of gastric injury in stress and supplementation with either TF or TT was able to reduce the lipid peroxidation levels compared to the control rats. We conclude that both tocopherol and tocotrienol are comparable in their gastro-protective ability against damage by free radicals generated in stress conditions, but only tocotrienol has the ability to block the stress-induced changes in the gastric acidity and gastrin level.
    Matched MeSH terms: Glucagon-Like Peptide 1/blood
  17. Ahmed RH, Huri HZ, Al-Hamodi Z, Salem SD, Muniandy S
    PLoS One, 2015;10(10):e0140618.
    PMID: 26474470 DOI: 10.1371/journal.pone.0140618
    BACKGROUND: A soluble form of CD26/dipeptidyl peptidase-IV (sCD26/DPP-IV) induces DPP-IV enzymatic activity that degrades incretin. We investigated fasting serum levels of sCD26/DPP-IV and active glucagon-like peptide-1 (GLP-1) in Malaysian patients with type 2 diabetes mellitus (T2DM) with and without metabolic syndrome (MetS), as well as the associations between sCD26/DPP-IV levels, MetS, and antidiabetic therapy.

    METHODS: We assessed sCD26/DPP-IV levels, active GLP-1 levels, body mass index (BMI), glucose, insulin, A1c, glucose homeostasis indices, and lipid profiles in 549 Malaysian subjects (including 257 T2DM patients with MetS, 57 T2DM patients without MetS, 71 non-diabetics with MetS, and 164 control subjects without diabetes or metabolic syndrome).

    RESULTS: Fasting serum levels of sCD26/DPP-IV were significantly higher in T2DM patients with and without MetS than in normal subjects. Likewise, sCD26/DPP-IV levels were significantly higher in patients with T2DM and MetS than in non-diabetic patients with MetS. However, active GLP-1 levels were significantly lower in T2DM patients both with and without MetS than in normal subjects. In T2DM subjects, sCD26/DPP-IV levels were associated with significantly higher A1c levels, but were significantly lower in patients using monotherapy with metformin. In addition, no significant differences in sCD26/DPP-IV levels were found between diabetic subjects with and without MetS. Furthermore, sCD26/DPP-IV levels were negatively correlated with active GLP-1 levels in T2DM patients both with and without MetS. In normal subjects, sCD26/DPP-IV levels were associated with increased BMI, cholesterol, and LDL-cholesterol (LDL-c) levels.

    CONCLUSION: Serum sCD26/DPP-IV levels increased in T2DM subjects with and without MetS. Active GLP-1 levels decreased in T2DM patients both with and without MetS. In addition, sCD26/DPP-IV levels were associated with Alc levels and negatively correlated with active GLP-1 levels. Moreover, metformin monotherapy was associated with reduced sCD26/DPP-IV levels. In normal subjects, sCD26/DPP-IV levels were associated with increased BMI, cholesterol, and LDL-c.

    Matched MeSH terms: Glucagon-Like Peptide 1/blood
  18. Chellappan DK, Yap WS, Bt Ahmad Suhaimi NA, Gupta G, Dua K
    Panminerva Med, 2018 Sep;60(3):117-131.
    PMID: 29696964 DOI: 10.23736/S0031-0808.18.03455-9
    The prevalence of type 2 diabetes mellitus (T2DM) has been increasing at an alarming rate. With an increased understanding of the pathophysiology and pathogenesis of T2DM, various new therapeutic options have been developed to target different key defects in T2DM. Incremental innovations of existing therapies either through unprecedented drug combinations, modified drug molecules, or improved delivery systems are capable to nullify some of the undesirable side effects of traditional therapies as well as to enhance effectiveness. The existing administration routes include inhalation, nasal, buccal, parenteral and oral. Newer drug targets such as protein kinase B (Akt/PKB), AMP-activated protein kinase (AMPK), sirtuin (SIRT), and others are novel approaches that act via different mechanisms and possibly treating T2DM of distinct variations and aetiologies. Other therapies such as endobarrier, gene therapy, and stem cell technology utilize advanced techniques to treat T2DM, and the potential of these therapies are still being explored. Gene therapy is plausible to fix the underlying pathology of T2DM instead of using traditional reactive treatments, especially with the debut of Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein9 (CRISPR-Cas9) gene editing tool. Molecular targets in T2DM are also being extensively studied as it could target the defects at the molecular level. Furthermore, antibody therapies and vaccinations are also being developed against T2DM; but the ongoing clinical trials are relatively lesser and the developmental progress is slower. Although, there are many therapies designed to cure T2DM, each of them has their own advantages and disadvantages. The preference for the treatment plan usually depends on the health status of the patient and the treatment goal. Therefore, an ideal treatment should take patient's compliance, efficacy, potency, bioavailability, and other pharmacological and non-pharmacological properties into account.
    Matched MeSH terms: Glucagon-Like Peptide 1/metabolism
  19. Ahmed RH, Huri HZ, Muniandy S, Al-Hamodi Z, Al-Absi B, Alsalahi A, et al.
    Clin Biochem, 2017 Sep;50(13-14):746-749.
    PMID: 28288852 DOI: 10.1016/j.clinbiochem.2017.03.008
    OBJECTIVES: Soluble DPP4 (sDPP4) is a novel adipokine that degrades glucagon-like peptide (GLP-1). We evaluated the fasting serum levels of active GLP-1 and sDPP4 in obese, overweight and normal weight subjects to assess the association between sDPP4 levels, active GLP-1 levels and insulin resistance in obese subjects.

    METHODS: The study involved 235 Malaysian subjects who were randomly selected (66 normal weight subjects, 97 overweight, 59 obese subjects, and 13 subjects who were underweight). Serum sDPP4 and active GLP-1 levels were examined by enzyme-linked immunosorbent assay (ELISA). Also, body mass index kg/m(2) (BMI), lipid profiles, insulin and glucose levels were evaluated. Insulin resistance (IR) was estimated via the homeostasis model assessment for insulin resistance (HOMA-IR).

    RESULTS: Serum sDPP4 levels were significantly higher in obese subjects compared to normal weight subjects (p=0.034), whereas serum levels of active GLP-1 were lower (p=0.021). In obese subjects, sDPP4 levels correlated negatively with active GLP-1 levels (r(2)=-0.326, p=0.015). Furthermore, linear regression showed that sDPP4 levels were positively associated with insulin resistance (B=82.28, p=0.023) in obese subjects.

    CONCLUSION: Elevated serum sDPP4 levels and reduced GLP-1 levels were observed in obese subjects. In addition, sDPP4 levels correlated negatively with active GLP-1 levels but was positively associated with insulin resistance. This finding provides evidence that sDPP4 and GLP-1 may play an important role in the pathogenesis of obesity, suggesting that sDPP4 may be valuable as an early marker for the augmented risk of obesity and insulin resistance.

    Matched MeSH terms: Glucagon-Like Peptide 1/blood*
  20. Lee CY
    Basic Clin Pharmacol Toxicol, 2016 Mar;118(3):173-80.
    PMID: 26551045 DOI: 10.1111/bcpt.12524
    Type 2 diabetes mellitus is a chronic metabolic disorder that has become the fourth leading cause of death in the developed countries. The disorder is characterized by pancreatic β-cells dysfunction, which causes hyperglycaemia leading to several other complications. Treatment by far, which focuses on insulin administration and glycaemic control, has not been satisfactory. Glucagon-like peptide-1 (GLP1) is an endogenous peptide that stimulates post-prandial insulin secretion. Despite being able to mimic the effect of insulin, GLP1 has not been the target drug in diabetes treatment due to the peptide's metabolic instability. After a decade-long effort to improve the pharmacokinetics of GLP1, a number of GLP1 analogues are currently available on the market. The current Minireview does not discuss these drugs but presents strategies that were undertaken to address the weaknesses of the native GLP1, particularly drug delivery techniques used in developing GLP1 nanoparticles and modified GLP1 molecule. The article highlights how each of the selected preparations has improved the efficacy of GLP1, and more importantly, through an overview of these studies, it will provide an insight into strategies that may be adopted in the future in the development of a more effective oral GLP1 formulation.
    Matched MeSH terms: Glucagon-Like Peptide 1
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links