Displaying all 9 publications

Abstract:
Sort:
  1. Al-Alimi AA, Kanakiri N, Kamil M, Al-Rimawi HS, Zaki AH, Yusoff NM
    J Coll Physicians Surg Pak, 2010 Dec;20(12):794-7.
    PMID: 21205543 DOI: 12.2010/JCPSP.794797
    OBJECTIVE:
    To evaluate the G6PD(C563T) Mediterranean mutation among Jordanian females who were admitted to Princess Rahma Teaching Hospital (PRTH) with/or previous history of favism.
    STUDY DESIGN:
    A descriptive study.
    PLACE AND DURATION OF STUDY:
    Jordanian University of Science and Technology and PRTH, from October 2003 to October 2004.
    METHODOLOGY:
    After obtaining approval from the Ethics Committee of Jordanian University of Science and Technology, a total of 32 females were included in this study. Samples from 15 healthy individual females were used as a negative control. Blood samples from these patients were collected and analyzed by allele-specific polymerase chain reaction (AS-PCR) to determine the G6PD(C563T) mutation.
    RESULTS:
    Twenty one out of 32 patients were found to be G6PD(C563T) Mediterranean mutation (65.6%) positive. Three out of 21 patients were homozygous and remaining 18 were heterozygous for G6PD(C563T) Mediterranean mutation. Eleven (34.4%) out of 32 patients were found to be negative for G6PD(C563T) mutation indicating the presence of other G6PD mutations in the study sample.
    CONCLUSION:
    G6PD(C563T) Mediterranean mutation accounted for 65.6% of the study sample with favism in the North of Jordan. There is likely to be another G6PD deficiency variant implicated in acute hemolytic crisis (favism).
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/complications
  2. Boo NY, Ainoon O, Arif ZA, Cheong SK, Haliza MS
    J Paediatr Child Health, 1995 Feb;31(1):44-6.
    PMID: 7748690
    OBJECTIVE: The objective of this study was to determine the degree of severity of enzyme deficiency in glucose-6-phosphate dehydrogenase (G6PD)-deficient Malaysian neonates as part of an effort to identify risk factors associated with severe hyperbilirubinaemia in G6PD-deficient infants.

    METHODOLOGY: During this study, enzyme activity was measured in 53/59 (89.8%) hospital-diagnosed G6PD-deficient neonates (34 Malays, 12 Chinese, and seven other ethnic groups) born consecutively in the Kuala Lumpur Maternity Hospital. All neonates, except one, were males.

    RESULTS: The mean level of enzyme activity of the 52 males G6PD-deficient neonates (0.47 iu/g Hb, 95% confidence intervals: 0.37, 0.57) was less than 10% of that of normal Malaysian male neonates. The enzyme activity of the only female G6PD-deficient infant, at 1.11 iu/g Hb, was 12.5% of the mean G6PD enzyme activity of normal females.

    CONCLUSION: Our results showed that G6PD deficiency in Malaysian neonates predominantly affects males and is usually severe.

    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/complications
  3. George E
    Ann Acad Med Singap, 1994 Jan;23(1):89-93.
    PMID: 7514384
    The clinical severity of the mutations causing beta-thalassaemia in West Malaysia is presented. Thalassaemia clinical scores (Thal CS), a scoring system, has been formulated to predict clinical severity. It is the type of beta-thalassaemia mutation present that decides on the clinical phenotype. The most severe beta-thalassaemia mutation is assigned a score of 4. A score of 8 indicates a severe thalassaemia phenotype. Alpha-thalassaemia, increased synthesis of Hb F, and glucose-6-phosphate deficiency may ameliorate the clinical condition at phenotype level, and the co-inheritance of hereditary ovalocytosis aggravates it.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/complications
  4. Lai YK, Lai NM, Lee SW
    Ann Hematol, 2017 May;96(5):839-845.
    PMID: 28197721 DOI: 10.1007/s00277-017-2945-6
    Emerging epidemiological evidence suggests that patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency may have a higher risk of developing diabetes. The aim of the review was to synthesise the evidence on the association between G6PD deficiency and diabetes. A systematic search on Medline, EMBASE, AMED and CENTRAL databases for studies published between January 1966 and September 2016 that assessed the association between G6PD deficiency and diabetes was conducted. This was supplemented by a review of the reference list of retrieved articles. We extracted data on study characteristics, outcomes and performed an assessment on the methodological quality of the studies. A random-effects model was used to compute the summary risk estimates. Fifteen relevant publications involving 949,260 participants were identified, from which seven studies contributed to the meta-analysis. G6PD deficiency was associated with a higher odd of diabetes (odds ratio 2.37, 95% confidence interval 1.50-3.73). The odds ratio of diabetes among men was higher (2.22, 1.31-3.75) compared to women (1.87, 1.12-3.12). This association was broadly consistent in the sensitivity analysis. Current evidence suggests that G6PD deficiency may be a risk factor for diabetes, with higher odds among men compared to women. Further research is needed to determine how G6PD deficiency moderates diabetes.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/complications*
  5. Khoo KK
    Ann Trop Med Parasitol, 1981 Dec;75(6):591-5.
    PMID: 7325735 DOI: 10.1080/00034983.1981.11687489
    One hundred and nine (9·8%) out of 1103 malaria patients examined in Sabah were deficient in glucose-6-phosphate dehydrogenase (G6PD). Sixty-nine of these G6PD-deficient patients were randomly allocated to one of three treatment regimes with (a) chloroquine, (b) chloroquine and primaquine or (c) sulfadoxine-pyrimethamine (Fansidar). No haemolysis was observed in group (a); except for a single mild case, no haemolysis was seen in group (c). However, in the primaquine group (23 patients), haemolysis occurred in seven of the 16 patients who had complete G6PD deficiency. Of these seven, five required blood transfusion and the other two developed acute renal failure, one requiring peritoneal dialysis. In the Fansidar group (c), four of the 22 patients took more than 15 days to clear the parasitaemia. Chloroquine resistance to falciparum infection was common in the patients given this anti-malarial.
    Study site: Queen Elizabeth Hospital, Kola Kinabalu, Sabah, Malaysia
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/complications*
  6. Lie-Injo LE, Virik HK, Lim PW, Lie AK, Ganesan J
    Acta Haematol., 1977;58(3):152-60.
    PMID: 409030 DOI: 10.1159/000207822
    A study was carried out of 332 babies suffering from severe neonatal jaundice who were admitted to the General Hospital, Kuala Lumpar, Malaysia. Of the 332 neonates, 51 were premature and 281 were full-term babies, 178 (110 Chinese, 58 Malay, 9 Indian and 1 European-Pakistani) had bilirubin levels of 20 mg% or higher, requiring exchange blood transfusion. Of the Chinese neonates, 23 (20.9%) had G6PD deficiency, 9 (8.2%) had Hb Bart's and 2 (1.8%) had an abnormal haemoglobin, one Hb Q and one fetal variant. Among the Malay infants, 10 (17.2%) had G6PD deficiency, 7 (12.1%) had Hb Bart's and 10 (17.2%) had abnormal haemoglobins (four had Hb E trait, one had Hb K and Bart's in addition to Hb E, three had Hb CoSp with Hb Bart's, one had Hb Q and one Hb Tak). One of the nine Indian neonates had G6PD deficiency and one had Hb S trait. The one European-Pakistani baby was a carrier of Hb D Punjab. In addition to G6PD deficiency, abnormal haemoglobins seem to have contributed to the high incidence of severe neonatal jaundice in Malaysia. The mean activities of GP, GR and GR after stimulation with FAD were higher, while the mean activity of PK and mean level of reduced glutathione were lower than in normal cord bloods. The percent increase of GR after FAD stimulation was significantly lower; fewer in this group had increases above 20% than in normal cord blood. The possible significance of the findings is discussed.
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/complications
  7. Saha N, Toh CC, Ghosh MB
    J Med Genet, 1973 Dec;10(4):340-5.
    PMID: 4204387
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/complications
  8. Lee SW, Chaiyakunapruk N, Lai NM
    Br J Clin Pharmacol, 2017 01;83(1):211-212.
    PMID: 27650490 DOI: 10.1111/bcp.13091
    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/complications
  9. Commons RJ, Simpson JA, Thriemer K, Chu CS, Douglas NM, Abreha T, et al.
    BMC Med, 2019 08 01;17(1):151.
    PMID: 31366382 DOI: 10.1186/s12916-019-1386-6
    BACKGROUND: Malaria causes a reduction in haemoglobin that is compounded by primaquine, particularly in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The aim of this study was to determine the relative contributions to red cell loss of malaria and primaquine in patients with uncomplicated Plasmodium vivax.

    METHODS: A systematic review identified P. vivax efficacy studies of chloroquine with or without primaquine published between January 2000 and March 2017. Individual patient data were pooled using standardised methodology, and the haematological response versus time was quantified using a multivariable linear mixed effects model with non-linear terms for time. Mean differences in haemoglobin between treatment groups at day of nadir and day 42 were estimated from this model.

    RESULTS: In total, 3421 patients from 29 studies were included: 1692 (49.5%) with normal G6PD status, 1701 (49.7%) with unknown status and 28 (0.8%) deficient or borderline individuals. Of 1975 patients treated with chloroquine alone, the mean haemoglobin fell from 12.22 g/dL [95% CI 11.93, 12.50] on day 0 to a nadir of 11.64 g/dL [11.36, 11.93] on day 2, before rising to 12.88 g/dL [12.60, 13.17] on day 42. In comparison to chloroquine alone, the mean haemoglobin in 1446 patients treated with chloroquine plus primaquine was - 0.13 g/dL [- 0.27, 0.01] lower at day of nadir (p = 0.072), but 0.49 g/dL [0.28, 0.69] higher by day 42 (p  25% to  5 g/dL.

    CONCLUSIONS: Primaquine has the potential to reduce malaria-related anaemia at day 42 and beyond by preventing recurrent parasitaemia. Its widespread implementation will require accurate diagnosis of G6PD deficiency to reduce the risk of drug-induced haemolysis in vulnerable individuals.

    TRIAL REGISTRATION: This trial was registered with PROSPERO: CRD42016053312. The date of the first registration was 23 December 2016.

    Matched MeSH terms: Glucosephosphate Dehydrogenase Deficiency/complications
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links