Displaying publications 1 - 20 of 98 in total

Abstract:
Sort:
  1. Zhou C, Yan L, Xu J, Hamezah HS, Wang T, Du F, et al.
    J Mol Model, 2024 Feb 13;30(3):68.
    PMID: 38347278 DOI: 10.1007/s00894-024-05875-7
    CONTEXT: Adipose triglyceride lipase (ATGL), a key enzyme responsible for lipolysis, catalyzes the first step of lipolysis and converts triglycerides to diacylglycerols and free fatty acids (FFA). Our previous work suggested that phillyrin treatment improves insulin resistance in HFD-fed mice, which was associated with ATGL inhibition. In this study, using docking simulation, we explored the binding pose of phillyrin and atglistatin (a mouse ATGL inhibitor) to ATGL in mouse. From the docking results, the interactions with Ser47 and Asp166 were speculated to have caused phillyrin to inhibit ATGL in mice. Further, molecular dynamics simulation of 100 ns and MM-GBSA were conducted for the protein-ligand complex, which indicated that the system was stable and that phillyrin displayed a better affinity to ATGL than did atglistatin throughout the simulation period. Moreover, the results of pharmacological validation were consistent with those of the in silico simulations. In summary, our study illustrates the potential of molecular docking to accurately predict the binding protein produced by AlphaFold and suggests that phillyrin is a potential small molecule that targets and inhibits ATGL enzymatic activity.

    METHODS: The ATGL-predicted protein structure, verified by PROCHECK, was determined using AlphaFold. Molecular docking, molecular dynamics simulation, and prime molecular mechanic-generalized born surface area were performed using LigPrep, Desmond, and prime MM-GBSA modules of Schrödinger software release 2021-2, respectively. For pharmacological validation, immunoblotting was performed to assess ATGL protein expression. The fluorescence intensity and glycerol concentration were quantified to evaluate the efficiency of phillyrin in inhibiting ATGL.

    Matched MeSH terms: Glucosides*
  2. Tang KS
    Curr Neuropharmacol, 2021;19(2):127-135.
    PMID: 32525774 DOI: 10.2174/1570159X18666200611144825
    Dementia is a collection of symptoms affecting a person's cognition. Dementia is debilitating, and therefore, finding an effective treatment is of utmost importance. Resveratrol, which exhibits neuroprotective effects, has low bioavailability. However, its glucoside polydatin is more bioavailable. Here, the evidence that supports the protective role of polydatin against dementia- related diseases such as Alzheimer's disease, vascular dementia, alcohol-related dementia, and Lewy body dementias is presented. The beneficial effects of polydatin from a mechanistic perspective are specifically emphasized in this review. Future directions in this area of research are also discussed.
    Matched MeSH terms: Glucosides/pharmacology; Glucosides/therapeutic use
  3. Hashim R, Mirzadeh SM, Heidelberg T, Minamikawa H, Yoshiaki T, Sugimura A
    Carbohydr Res, 2011 Dec 27;346(18):2948-56.
    PMID: 22088885 DOI: 10.1016/j.carres.2011.10.032
    Anomers and epimers α- and β-gluco and -galactosides are expected to behave differently. However, recent results on a series of Guerbet glycosides have indicated similar liquid crystal clearing temperatures for pure β-glucosides and the corresponding α-galactosides. This observation has led to speculation on similarities in the self-assembly interactions between the two systems, attributed to the trans-configuration of the 4-OH group and the hydrophobic aglycon. Previous simulations on related bilayers systems support this hypothesis, by relating this clearing transition temperature to intralayer (sugar-sugar) hydrogen bonding. In order to confirm the hypothesis, the comparison was expanded to include the cis-configurated pair, that is, α-gluco/β-galactoside. A set of α-configurated Guerbet glucosides as well as octyl α-galactoside were prepared and their thermotropic phase behavior studied. The data obtained enabled a complete comparison of the isomers of interest. While the results in general are in line with a pairing of the stereo-isomers according to the indicated cis/trans-configuration, differences within the pairs can be explained based on the direction of hydrogen bonds from a simple modeling study.
    Matched MeSH terms: Glucosides/chemical synthesis; Glucosides/chemistry*
  4. Sianturi J, Harneti D, Darwati, Mayanti T, Supratman U, Awang K
    Nat Prod Res, 2016 Oct;30(19):2204-8.
    PMID: 26985634 DOI: 10.1080/14786419.2016.1160233
    New (-)-5',6-dimethoxyisolariciresinol-(3″,4″-dimethoxy)-3α-O-β-d-glucopyranoside compound was isolated from the methanol extract of the bark of Aglaia eximia (Meliaceae). The chemical structure of the new compound were elucidated on the basis of spectroscopic data including, UV, IR, HR-ESI-TOFMS, 1D-NMR, 2D-NMR and comparison with those related compounds previously reported.
    Matched MeSH terms: Glucosides/isolation & purification*; Glucosides/chemistry
  5. M Hanif A, Bushra R, Ismail NE, Bano R, Abedin S, Alam S, et al.
    Pak J Pharm Sci, 2021 May;34(3(Supplementary)):1081-1087.
    PMID: 34602436
    The current investigation is based on efficient method development for the quantification of empagliflozin in raw and pharmaceutical dosage forms, as no pharmacopoeial method for the drug is available so far. The developed analytical method was validated as per ICH guidelines. C18 column with mobile phase (pH 4.8) consisted of 0.1% trifluoroacetic acid solution and acetonitrile (70:30 v/v) was used for drug analysis. The calibration plot showed good linear regression (r2>0.999) over the concentration of 0.025-30 μg mL-1. The LOD and LOQ were found to be 0.020 μg mL-1 and 0.061 μg mL-1, respectively. The percentage recovery was estimated between 98.0 to 100.13%. Accuracy and precision data were found to be less than 2%, indicating the suitability of method for routine analysis in pharmaceutical industries. Moreover, the drug solution was found to be stable in refrigerator and ambient room temperature with mean % accuracy of >98%. Empagliflozin contents were also tested in both the raw API and marketed tablet brands using this newly developed method. The mean assay of raw empagliflozin and tablet brands were ranged from 99.29%±1.12 to 100.95%±1.69 and 97.18%±1.59 to 98.92%±1.00 respectively. Based on these findings, the present investigated approach is suitable for quantification of empagliflozin in raw and pharmaceutical dosage forms.
    Matched MeSH terms: Glucosides/analysis*
  6. Balakumar P, Sundram K, Dhanaraj SA
    Pharmacol Res, 2014 Apr;82:34-9.
    PMID: 24705156 DOI: 10.1016/j.phrs.2014.03.008
    Diabetes mellitus is a greatly challenging disease of the 21 century, and the mortality rate due to this insidious disease is increasing worldwide in spite of availability of effective oral hypoglycemic agents. Satisfactory management of glycemic control in patients afflicted with type 2 diabetes mellitus (T2DM) remains a major clinical challenge. Identification of potential pharmacological target sites is therefore continuing as an integral part of the diabetic research. The sodium-glucose co-transporter type 2 (SGLT2) expressed in the renal proximal tubule plays an essential role in glucose reabsorption. Pharmacological blockade of SGLT2 prevents glucose reabsorption and subsequently induces the elimination of filtered glucose via urine, the process is known as 'glucuresis'. Dapagliflozin is a selective inhibitor of SGLT2. The US FDA approved dapagliflozin in January 2014 to improve glycemic control along with diet and exercise in adult patients afflicted with T2DM. It has a potential to decrease glycated hemoglobin and to promote weight loss. Although the mechanism of action of dapagliflozin is not directly linked with insulin or insulin sensitivity, reduction of plasma glucose by dapagliflozin via induction of glucosuria could improve muscle insulin sensitivity. Moreover, dapagliflozin could cause diuresis and subsequently fall in blood pressure. In addition to general discussion on the pharmacology of dapagliflozin, we propose in this review the possibilities of dual antidiabetic effect of dapagliflozin and its possible additional beneficial actions in hypertensive-obese-T2DM patients through its indirect blood pressure-lowering action and reduction of body calories and weight. Long-term clinical studies are however needed to clarify this contention.
    Matched MeSH terms: Glucosides/adverse effects; Glucosides/pharmacokinetics; Glucosides/pharmacology*; Glucosides/therapeutic use
  7. Nguan H, Ahmadi S, Hashim R
    Phys Chem Chem Phys, 2014 Jan 7;16(1):324-34.
    PMID: 24257208 DOI: 10.1039/c3cp52385c
    Through atomistic molecular dynamic simulations using a GROMOS53a6 force field for the carbohydrate, we studied the lyotropic reverse hexagonal phase HII from a glycolipid, namely the Guerbet branched-chain β-d-glucoside, at 14% and 22% water concentrations. Our simulations showed that at low water concentration (14%) the sugar head group overlapped extensively and protruded into the water channel. In contrast, in the 22% concentration system a water column free from the sugar headgroup ('free' water) was formed as expected for the system close to the limit of maximum hydration. In both concentrations, we found anomalous water diffusion in the xy-plane, i.e. the two-dimensional space confined by the surface of the cylinder. On the other hand, along the z-axis, the water diffusion obeyed the Einstein relation for the 22% system, while for the 14% system it was slightly anomalous. For the 22% system, the diffusion along the z-axis of the 'free' water obeyed the Einstein relation, while that of the 'bound' water is slightly anomalous. The xy-plane displacement of the 'bound' water was higher than that for the 'free' water at times longer than 200 ps, as a consequence of the exchange of water molecules between the two regions. Based on our findings, we proposed an alternative explanation to the observed spatial heterogeneity in the HII phase from probe diffusion by Penaloza et al. (Phys. Chem. Chem. Phys., 2012, 14(15), 5247-5250). We found the extent of contact with water was different at different oxygen atoms within the sugar ring. Generally, a higher probability of hydrogen bonding but a shorter lifetime was found in 22% water compared to the case of 14% water. Finally, we examined the extension and compression of the alkyl chain of a columnar.
    Matched MeSH terms: Glucosides/chemistry*
  8. Ling SK, Takashima T, Tanaka T, Fujioka T, Mihashi K, Kouno I
    Fitoterapia, 2004 Dec;75(7-8):785-8.
    PMID: 15567266
    A new megastigmane diglycoside was isolated from the leaves of Carallia brachiata. The structure was determined by spectroscopic methods as 3-hydroxy-5,6-epoxy-beta-ionol -3-O-beta-apiofuranosyl-(1-->6)-beta-glucopyranoside (1). Additionally, 29 known compounds consisting of two megastigmanes, one 1,2-dithiolane derivative, seven aromatic compounds, five condensed tannins, 12 flavonoids, and two glyceroglycolipids were isolated and identified.
    Matched MeSH terms: Glucosides/chemistry*
  9. Hussain RMF, Kim HK, Khurshid M, Akhtar MT, Linthorst HJM
    Metabolomics, 2018 01 31;14(3):25.
    PMID: 30830336 DOI: 10.1007/s11306-018-1317-0
    INTRODUCTION: WRKY proteins belong to a plant-specific class of transcription factors. Seventy-four WKRY genes have been identified in Arabidopsis and many WRKY proteins are known to be involved in responses to stress, especially to biotic stress. They may act either as transcriptional activators or as repressors of genes that play roles in the stress response. A number of studies have proposed the connection of Arabidopsis WRKY transcription factors in induced pathogenesis-related (PR) gene expression, although no direct evidence has been presented for specific WRKY-PR promoter interactions.

    OBJECTIVE: We previously identified AtWRKY50 as a transcriptional activator of SAR gene PR1. Although PR1 accumulates to high levels in plants after attack by pathogens, its function is still elusive. Here we investigated the effects of overexpression of several WRKY proteins, including AtWRKY50, on the metabolome of Arabidopsis thaliana.

    METHODS: The influence of overexpression of WRKY proteins on the metabolites of Arabidopsis was investigated by using an NMR spectroscopy-based metabolomic approach. The 1H NMR data was analysed using the multivariate data analysis methods, such as principal component analysis, hierarchical cluster analysis and partial least square-discriminant analysis.

    RESULTS: The results showed that the metabolome of transgenic Arabidopsis seedlings overexpressing AtWRKY50 was different from wild type Arabidopsis and transgenic Arabidopsis overexpressing other WRKY genes. Amongst other metabolites, sinapic acid and 1-O-sinapoyl-β-D-glucose especially appeared to be the most prominent discriminating metabolites, accumulating to levels 2 to 3 times higher in the AtWRKY50 overexpressor lines.

    CONCLUSION: Our results indicate a possible involvement of AtWRKY50 in secondary metabolite production in Arabidopsis, in particular of hydroxycinnamates such as sinapic acid and 1-O-sinapoyl-β-D-glucose.

    Matched MeSH terms: Glucosides/metabolism*
  10. Mayne KJ, Staplin N, Keane DF, Wanner C, Brenner S, Cejka V, et al.
    J Am Soc Nephrol, 2024 Feb 01;35(2):202-215.
    PMID: 38082486 DOI: 10.1681/ASN.0000000000000271
    SIGNIFICANCE STATEMENT: SGLT2 inhibitors reduce risk of kidney progression, AKI, and cardiovascular disease, but the mechanisms of benefit are incompletely understood. Bioimpedance spectroscopy can estimate body water and fat mass. One quarter of the EMPA-KIDNEY bioimpedance substudy CKD population had clinically significant levels of bioimpedance-derived "Fluid Overload" at recruitment. Empagliflozin induced a prompt and sustained reduction in "Fluid Overload," irrespective of sex, diabetes, and baseline N-terminal pro B-type natriuretic peptide or eGFR. No significant effect on bioimpedance-derived fat mass was observed. The effects of SGLT2 inhibitors on body water may be one of the contributing mechanisms by which they mediate effects on cardiovascular risk.

    BACKGROUND: CKD is associated with fluid excess that can be estimated by bioimpedance spectroscopy. We aimed to assess effects of sodium glucose co-transporter 2 inhibition on bioimpedance-derived "Fluid Overload" and adiposity in a CKD population.

    METHODS: EMPA-KIDNEY was a double-blind placebo-controlled trial of empagliflozin 10 mg once daily in patients with CKD at risk of progression. In a substudy, bioimpedance measurements were added to the main trial procedures at randomization and at 2- and 18-month follow-up visits. The substudy's primary outcome was the study-average difference in absolute "Fluid Overload" (an estimate of excess extracellular water) analyzed using a mixed model repeated measures approach.

    RESULTS: The 660 substudy participants were broadly representative of the 6609-participant trial population. Substudy mean baseline absolute "Fluid Overload" was 0.4±1.7 L. Compared with placebo, the overall mean absolute "Fluid Overload" difference among those allocated empagliflozin was -0.24 L (95% confidence interval [CI], -0.38 to -0.11), with similar sized differences at 2 and 18 months, and in prespecified subgroups. Total body water differences comprised between-group differences in extracellular water of -0.49 L (95% CI, -0.69 to -0.30, including the -0.24 L "Fluid Overload" difference) and a -0.30 L (95% CI, -0.57 to -0.03) difference in intracellular water. There was no significant effect of empagliflozin on bioimpedance-derived adipose tissue mass (-0.28 kg [95% CI, -1.41 to 0.85]). The between-group difference in weight was -0.7 kg (95% CI, -1.3 to -0.1).

    CONCLUSIONS: In a broad range of patients with CKD, empagliflozin resulted in a sustained reduction in a bioimpedance-derived estimate of fluid overload, with no statistically significant effect on fat mass.

    TRIAL REGISTRATION: Clinicaltrials.gov: NCT03594110 ; EuDRACT: 2017-002971-24 ( https://eudract.ema.europa.eu/ ).

    Matched MeSH terms: Glucosides*
  11. Davidson JA, Sukor N, Hew FL, Mohamed M, Hussein Z
    J Diabetes Investig, 2023 Feb;14(2):167-182.
    PMID: 36260389 DOI: 10.1111/jdi.13915
    The prevalence of type 2 diabetes mellitus continues to increase in many Asian countries, with possible contributing factors, such as younger-onset disease, diabetes development at lower body mass index, higher visceral fat accumulation and poorer β-cell function, among Asian populations. Sodium-glucose cotransporter 2 inhibitors have been shown to confer favorable effects in type 2 diabetes mellitus patients, such as improved glycemic control, weight and blood pressure reduction, and importantly, cardiorenal benefits. Sodium-glucose cotransporter 2 inhibitors are generally well-tolerated, and have a well-defined safety profile based on evidence from numerous clinical trials and post-marketing pharmacovigilance reporting. To our knowledge, this review is the first to provide a comprehensive coverage of the adverse events of sodium-glucose cotransporter 2 inhibitors, as well as their management and counseling aspects for Asian type 2 diabetes mellitus populations.
    Matched MeSH terms: Glucosides/therapeutic use
  12. Chan Y, Ng SW, Xin Tan JZ, Gupta G, Tambuwala MM, Bakshi HA, et al.
    Chem Biol Interact, 2019 Nov 28;315:108911.
    PMID: 31786185 DOI: 10.1016/j.cbi.2019.108911
    Over the years, the attention of researchers in the field of modern drug discovery and development has become further intense on the identification of active compounds from plant sources and traditional remedies, as they exhibit higher therapeutic efficacies and improved toxicological profiles. Among the large diversity of plant extracts that have been discovered and explored for their potential therapeutic benefits, asperuloside, an iridoid glycoside, has been proven to provide promising effects as a therapeutic agent for several diseases. Although, this potent substance exists in several genera, it is primarily found in plants belonging to the genus Eucommia. Recent decades have seen a surge in the research on Asperuloside, making it one of the most studied natural products in the field of medicine and pharmacology. In this review, we have attempted to study the various reported mechanisms of asperuloside that form the basis of its wide spectrum of pharmacological activities.
    Matched MeSH terms: Glucosides
  13. Subramaniam S, Selvaduray KR, Radhakrishnan AK
    Biomolecules, 2019 11 21;9(12).
    PMID: 31766399 DOI: 10.3390/biom9120758
    Cancer is a devastating disease that has claimed many lives. Natural bioactive agents from plants are gaining wide attention for their anticancer activities. Several studies have found that natural plant-based bioactive compounds can enhance the efficacy of chemotherapy, and in some cases ameliorate some of the side-effects of drugs used as chemotherapeutic agents. In this paper, we have reviewed the literature on the anticancer effects of four plant-based bioactive compounds namely, curcumin, myricetin, geraniin and tocotrienols (T3) to provide an overview on some of the key findings that are related to this effect. The molecular mechanisms through which the active compounds may exert their anticancer properties in cell and animal-based studies also discussed.
    Matched MeSH terms: Glucosides
  14. Tan HP, Wong DZ, Ling SK, Chuah CH, Kadir HA
    Fitoterapia, 2012 Jan;83(1):223-9.
    PMID: 22093753 DOI: 10.1016/j.fitote.2011.10.019
    The galloylated cyanogenic glucosides based on prunasin (1-7), gallotannins (8-14), ellagitannins (15-17), ellagic acid derivatives (18, 19) and gallic acid (20) isolated from the leaves of Phyllagathis rotundifolia (Melastomataceae) were investigated for their neuroprotective activity against hydrogen peroxide (H(2)O(2))-induced oxidative damage in NG108-15 hybridoma cell line. Among these compounds, the gallotannins and ellagitannins exhibited remarkable neuroprotective activities against oxidative damage in vitro as compared to galloylated cyanogenic glucosides and ellagic acid derivatives in a dose-dependent manner. They could be explored further as potential natural neuroprotectors in various remedies of neurodegenerative diseases.
    Matched MeSH terms: Glucosides/pharmacology*; Glucosides/chemistry
  15. Elendran S, Wang LW, Prankerd R, Palanisamy UD
    Pharm Biol, 2015;53(12):1719-26.
    PMID: 25853977 DOI: 10.3109/13880209.2014.1003356
    Natural products play a vital role in the discovery of leads for novel pharmacologically active drugs. Geraniin (GE) was identified as the major compound in the rind of Nephelium lappaceum L. (Sapindaceae), while ellagic and gallic acids have been shown to be its main metabolites. GE and its metabolites possess a range of bioactive properties including being an anti-infective, anticarcinogenic, antihyperglycemic, and antihypertensive.
    Matched MeSH terms: Glucosides/isolation & purification; Glucosides/chemistry*
  16. Ling SK, Tanaka T, Kouno I
    J Nat Prod, 2001 Jun;64(6):796-8.
    PMID: 11421747
    A new iridoid glucoside with an ether linkage between C-3 and C-10 and a novel nonglycosidic iridoid with an ether linkage between C-3 and C-6 and a lactonic linkage at C-1, named macrophylloside (1) and macrophyllide (2), respectively, were isolated from the leaves of Rothmannia macrophylla, along with six known iridoids. Their structures were established by NMR and MS spectroscopies.
    Matched MeSH terms: Glucosides/isolation & purification; Glucosides/chemistry*
  17. Ling SK, Komorita A, Tanaka T, Fujioka T, Mihashi K, Kouno I
    J Nat Prod, 2002 May;65(5):656-60.
    PMID: 12027736
    Six new sulfur-containing bis-iridoid glucosides, saprosmosides A-F (1-6), were isolated from the leaves of Saprosma scortechinii. From the stems of this same plant, two new iridoid glucosides, 3,4-dihydro-3-methoxypaederoside (8) and 10-O-benzoyldeacetylasperulosidic acid (12), were isolated. Their structures were elucidated by means of chemical, NMR, and mass spectroscopic methods. Additionally, 11 known iridoid glucosides were isolated and characterized as deacetylasperuloside, asperuloside, paederoside (7), deacetylasperulosidic acid (9), scandoside, asperulosidic acid, 10-acetylscandoside, paederosidic acid (10), 6-epi-paederosidic acid (11), methylpaederosidate, and monotropein. The structures of the new bis-iridoid glucosides were formed by intermolecular esterification between the glucose and carboxyl groups of three monomeric iridoid glucosides (7, 9, and 10).
    Matched MeSH terms: Glucosides/isolation & purification*; Glucosides/chemistry
  18. Chelyn JL, Omar MH, Mohd Yousof NS, Ranggasamy R, Wasiman MI, Ismail Z
    ScientificWorldJournal, 2014;2014:724267.
    PMID: 25405231 DOI: 10.1155/2014/724267
    Clinacanthus nutans (family Acanthaceae) has been used for the treatment of inflammation and herpes viral infection. Currently, there has not been any report on the qualitative and quantitative determination of the chemical markers in the leaves of C. nutans. The C-glycosidic flavones such as shaftoside, isoorientin, orientin, isovitexin, and vitexin have been found to be major flavonoids in the leaves of this plant. Therefore, we had developed a two-step method using thin-layer chromatography (TLC) and high pressure liquid chromatography (HPLC) for the rapid identification and quantification of the flavones C-glycosides in C. nutans leaves. The TLC separation of the chemical markers was achieved on silica gel 60 plate using ethyl acetate : formic acid : acetic acid : water (100 : 11 : 11 : 27 v/v/v/v) as the mobile phase. HPLC method was optimized and validated for the quantification of shaftoside, orientin, isovitexin, and vitexin and was shown to be linear in concentration range tested (0.4-200 μg/mL, r(2) ≥ 0.996), precise (RSD ≤ 4.54%), and accurate (95-105%). The concentration of shaftoside, orientin, vitexin, and isovitexin in C. nutans leave samples was 2.55-17.43, 0.00-0.86, 0.00-2.01, and 0.00-0.91 mmol/g, respectively.
    Matched MeSH terms: Glucosides/isolation & purification*; Glucosides/chemistry
  19. Elendran S, Muniyandy S, Lee WW, Palanisamy UD
    Food Funct, 2019 Feb 20;10(2):602-615.
    PMID: 30566155 DOI: 10.1039/c8fo01927d
    Ellagitannins, found abundantly in berries, pomegranates, walnuts and almonds, have been increasingly investigated for their health benefits. Geraniin (GE), an ellagitannin, found predominantly in herbal plants, as well has been shown to exhibit a number of biological activities. Like many hydrolysable tannins, geraniin is water-soluble and readily undergoes hydrolysis in the presence of hot water, weak acids and weak bases to yield several metabolites including corilagin (CO), ellagic acid (EA) and gallic acid (GA). There are numerous studies on the pharmacological effectiveness of GE, CO and GA. However, the intestinal permeability of GE and CO has never been investigated before. Caco-2 cell transport assay was utilized to evaluate the in vitro permeability of GE and its metabolites. GE, CO and EA were found to have no apparent permeability (Papp) while GA displayed a Papp value of 31.3 ± 1.1 × 10-6 cm s-1. Mass balance studies showed a loss of geraniin and its metabolites during transport. Chemical stability studies in the transport buffers revealed that GE and CO were hydrolyzed in the HBSS buffers. Experiments using lysed cells revealed that GE and its metabolites were metabolized during transport. Absorption and desorption studies confirmed the accumulation of EA inside the cells. The above results indicate that the compounds have poor oral absorption. To consider these compounds or their natural extracts as oral nutraceutical candidates, formulation strategies are mandatory.
    Matched MeSH terms: Glucosides/metabolism*; Glucosides/chemistry
  20. Shimokawa Y, Akao Y, Hirasawa Y, Awang K, Hadi AH, Sato S, et al.
    J Nat Prod, 2010 Apr 23;73(4):763-7.
    PMID: 20192242 DOI: 10.1021/np9007987
    Gneyulins A (1) and B (2), two new stilbene trimers consisting of oxyresveratrol constituent units, and noidesols A (3) and B (4), two new dihydroflavonol-C-glucosides, were isolated from the bark of Gnetum gnemonoides. The structures and configurations of 1-4 were elucidated on the basis of 2D NMR correlations and X-ray analysis. Gneyulins A (1) and B (2) showed inhibition of Na(+)-glucose transporters (SGLT-1 and SGLT-2).
    Matched MeSH terms: Glucosides/isolation & purification*; Glucosides/pharmacology; Glucosides/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links