Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. He Z, Tan JS, Lai OM, Ariff AB
    Food Chem, 2015 Aug 15;181:19-24.
    PMID: 25794715 DOI: 10.1016/j.foodchem.2014.11.166
    In this study, the methods for extraction and purification of miraculin from Synsepalum dulcificum were investigated. For extraction, the effect of different extraction buffers (phosphate buffer saline, Tris-HCl and NaCl) on the extraction efficiency of total protein was evaluated. Immobilized metal ion affinity chromatography (IMAC) with nickel-NTA was used for the purification of the extracted protein, where the influence of binding buffer pH, crude extract pH and imidazole concentration in elution buffer upon the purification performance was explored. The total amount of protein extracted from miracle fruit was found to be 4 times higher using 0.5M NaCl as compared to Tris-HCl and phosphate buffer saline. On the other hand, the use of Tris-HCl as binding buffer gave higher purification performance than sodium phosphate and citrate-phosphate buffers in IMAC system. The optimum purification condition of miraculin using IMAC was achieved with crude extract at pH 7, Tris-HCl binding buffer at pH 7 and the use of 300 mM imidazole as elution buffer, which gave the overall yield of 80.3% and purity of 97.5%. IMAC with nickel-NTA was successfully used as a single step process for the purification of miraculin from crude extract of S. dulcificum.
    Matched MeSH terms: Glycoproteins/chemistry*
  2. Tsutsui K, Osugi T, Son YL, Ubuka T
    Gen Comp Endocrinol, 2018 08 01;264:48-57.
    PMID: 28754274 DOI: 10.1016/j.ygcen.2017.07.024
    Neuropeptides that possess the Arg-Phe-NH2 motif at their C-termini (i.e., RFamide peptides) have been characterized in the nervous system of both invertebrates and vertebrates. In vertebrates, RFamide peptides make a family and consist of the groups of gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), kisspeptin (kiss1 and kiss2), and pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa). It now appears that these vertebrate RFamide peptides exert important neuroendocrine, behavioral, sensory, and autonomic functions. In 2000, GnIH was discovered as a novel hypothalamic RFamide peptide inhibiting gonadotropin release in quail. Subsequent studies have demonstrated that GnIH acts on the brain and pituitary to modulate reproductive physiology and behavior across vertebrates. To clarify the origin and evolution of GnIH, the existence of GnIH was investigated in agnathans, the most ancient lineage of vertebrates, and basal chordates, such as tunicates and cephalochordates (represented by amphioxus). This review first summarizes the structure and function of GnIH and other RFamide peptides, in particular NPFF having a similar C-terminal structure of GnIH, in vertebrates. Then, this review describes the evolutionary origin of GnIH based on the studies in agnathans and basal chordates.
    Matched MeSH terms: Glycoproteins/chemistry*
  3. Kimura Y, Yoshiie T, Kit WK, Maeda M, Kimura M, Tan SH
    Biosci Biotechnol Biochem, 2003 Oct;67(10):2232-9.
    PMID: 14586113
    The pollen of oil palm (Elaeis guineensis Jacq.) is a strong allergen and causes severe pollinosis in Malaysia and Singapore. In the previous study (Biosci. Biotechnol. Biochem., 64, 820-827 (2002)), from the oil palm pollens, we purified an antigenic glycoprotein (Ela g Bd 31 K), which is recognized by IgE from palm pollinosis patients. In this report, we describe the structural analysis of sugar chains linked to palm pollen glycoproteins to confirm the ubiquitous occurrence of antigenic N-glycans in the allergenic pollen. N-Glycans liberated from the pollen glycoprotein mixture by hydrazinolysis were labeled with 2-aminopyridine followed by purification with a combination of size-fractionation HPLC and reversed-phase HPLC. The structures of the PA-sugar chains were analyzed by a combination of two-dimensional sugar chain mapping, electrospray ionization mass spectrometry (ESI-MS), and tandem MS analysis, as well as exoglycosidase digestions. The antigenic N-glycan bearing alpha1-3 fucose and/or beta1-2 xylose residues accounts for 36.9% of total N-glycans: GlcNAc2Man3Xyl1Fuc1GlcNAc2 (24.6%), GlcNAc2Man3Xyl1GlcNAc2 (4.4%), Man3Xyl1Fuc1-GlcNAc2 (1.1%), GlcNAc1Man3Xyl1Fuc1GlcNAc2 (5.6%), and GlcNAc1Man3Xyl1GlcNAc2 (1.2%). The remaining 63.1% of the total N-glycans belong to the high-mannose type structure: Man9GlcNAc2 (5.8%), Man8GlcNAc2 (32.1%), Man7GlcNAc2 (19.9%), Man6GlcNAc2 (5.3%).
    Matched MeSH terms: Glycoproteins/chemistry*
  4. Ali F, Khan KM, Salar U, Iqbal S, Taha M, Ismail NH, et al.
    Bioorg Med Chem, 2016 08 15;24(16):3624-35.
    PMID: 27325448 DOI: 10.1016/j.bmc.2016.06.002
    Dihydropyrimidones 1-37 were synthesized via a 'one-pot' three component reaction according to well-known Biginelli reaction by utilizing Cu(NO3)2·3H2O as catalyst, and screened for their in vitro β-glucuronidase inhibitory activity. It is worth mentioning that amongst the active molecules, compounds 8 (IC50=28.16±.056μM), 9 (IC50=18.16±0.41μM), 10 (IC50=22.14±0.43μM), 13 (IC50=34.16±0.65μM), 14 (IC50=17.60±0.35μM), 15 (IC50=15.19±0.30μM), 16 (IC50=27.16±0.48μM), 17 (IC50=48.16±1.06μM), 22 (IC50=40.16±0.85μM), 23 (IC50=44.16±0.86μM), 24 (IC50=47.16±0.92μM), 25 (IC50=18.19±0.34μM), 26 (IC50=33.14±0.68μM), 27 (IC50=44.16±0.94μM), 28 (IC50=24.16±0.50μM), 29 (IC50=34.24±0.47μM), 31 (IC50=14.11±0.21μM) and 32 (IC50=9.38±0.15μM) found to be more potent than the standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Molecular docking study was conducted to establish the structure-activity relationship (SAR) which demonstrated that a number of structural features of dihydropyrimidone derivatives were involved to exhibit the inhibitory potential. All compounds were characterized by spectroscopic techniques such as (1)H, (13)C NMR, EIMS and HREI-MS.
    Matched MeSH terms: Glycoproteins/chemistry
  5. Amid BT, Mirhosseini H
    Molecules, 2012 Sep 10;17(9):10875-92.
    PMID: 22964503 DOI: 10.3390/molecules170910875
    Natural biopolymers from plant sources contain many impurities (e.g., fat, protein, fiber, natural pigment and endogenous enzymes), therefore, an efficient purification process is recommended to minimize these impurities and consequently improve the functional properties of the biopolymer. The main objective of the present study was to investigate the effect of different purification techniques on the yield, protein content, solubility, water- and oil-holding capacity of a heteropolysaccharide-protein biopolymer obtained from durian seed. Four different purification methods using different chemicals and solvents (i.e., A (isopropanol and ethanol), B (isopropanol and acetone), C (saturated barium hydroxide), and D (Fehling solution)] to liberate the purified biopolymer from its crude form were compared. In most cases, the purification process significantly (p < 0.05) improved the physicochemical properties of heteropolysaccharide-protein biopolymer from durian fruit seed. The present work showed that the precipitation using isopropanol and acetone (Method B) resulted in the highest purification yield among all the tested purification techniques. The precipitation using saturated barium hydroxide (Method C) led to induce the highest solubility and relatively high capacity of water absorption. The current study reveals that the precipitation using Fehling solution (Method D) most efficiently eliminates the protein fraction, thus providing more pure biopolymer suitable for biological applications.
    Matched MeSH terms: Glycoproteins/chemistry*
  6. An Y, Cipollo JF
    Anal Biochem, 2011 Aug 1;415(1):67-80.
    PMID: 21545787 DOI: 10.1016/j.ab.2011.04.018
    Here a mass spectrometry-based platform for the analysis of glycoproteins is presented. Glycopeptides and released glycans are analyzed, the former by quadrupole orthogonal time-of-flight liquid chromatography/mass spectrometry (QoTOF LC/MS) and the latter by permethylation analysis using matrix-assisted laser desorption/ionization (MALDI)-TOF MS. QoTOF LC/MS analysis reveals the stochastic distribution of glycoforms at occupied sequons, and the latter provides a semiquantitative assessment of overall protein glycosylation. Hydrophilic interaction chromatography (HILIC) was used for unbiased enrichment of glycopeptides and was validated using five model N-glycoproteins bearing a wide array of glycans, including high-mannose, complex, and hybrid subtypes such as sulfo and sialyl forms. Sialyl and especially sulfated glycans are difficult to analyze because these substitutions are labile. The conditions used here allow detection of these compounds quantitatively, intact, and in the context of overall glycosylation. As a test case, we analyzed influenza B/Malaysia/2506/2004 hemagglutinin, a component of the 2006-2007 influenza vaccine. It bears 11 glycosylation sites. Approximately 90% of its glycans are high mannose, and 10% are present as complex and hybrid types, including those with sulfate. The stochastic distribution of glycoforms at glycosylation sites is revealed. This platform should have wide applications to glycoproteins in basic sciences and industry because no apparent bias for any glycoforms is observed.
    Matched MeSH terms: Glycoproteins/chemistry*
  7. Taha M, Sultan S, Nuzar HA, Rahim F, Imran S, Ismail NH, et al.
    Bioorg Med Chem, 2016 08 15;24(16):3696-704.
    PMID: 27312423 DOI: 10.1016/j.bmc.2016.06.008
    Thirty N-arylidenequinoline-3-carbohydrazides (1-30) have been synthesized and evaluated against β-glucuronidase inhibitory potential. Twenty four analogs showed outstanding β-glucuronidase activity having IC50 values ranging between 2.11±0.05 and 46.14±0.95 than standard d-saccharic acid 1,4 lactone (IC50=48.4±1.25μM). Six analogs showed good β-glucuronidase activity having IC50 values ranging between 49.38±0.90 and 80.10±1.80. Structure activity relationship and the interaction of the active compounds and enzyme active site with the help of docking studies were established. Our study identifies novel series of potent β-glucuronidase inhibitors for further investigation.
    Matched MeSH terms: Glycoproteins/chemistry
  8. Firoz A, Malik A, Singh SK, Jha V, Ali A
    Gene, 2015 Dec 15;574(2):235-46.
    PMID: 26260015 DOI: 10.1016/j.gene.2015.08.012
    Glycogenes regulate a large number of biological processes such as cancer and development. In this work, we created an interaction network of 923 glycogenes to detect potential hubs from different mouse tissues using RNA-Seq data. DAVID functional cluster analysis revealed enrichment of immune response, glycoprotein and cholesterol metabolic processes. We also explored nsSNPs that may modify the expression and function of identified hubs using computational methods. We observe that the number of nsSNPs predicted by any two methods to affect protein function is 4, 7 and 2 for FLT1, NID2 and TNFRSF1B. Residues in the native and mutant proteins were analyzed for solvent accessibility and secondary structure change. Analysis of hubs can help in determining their degree of conservation and understanding their functions in biological processes. The nsSNPs proposed in this work may be further targeted through experimental methods for understanding structural and functional relationships of hub mutants.
    Matched MeSH terms: Glycoproteins/chemistry
  9. Taha M, Ismail NH, Imran S, Selvaraj M, Rashwan H, Farhanah FU, et al.
    Bioorg Chem, 2015 Aug;61:36-44.
    PMID: 26073618 DOI: 10.1016/j.bioorg.2015.05.010
    Twenty five 4, 6-dichlorobenzimidazole derivatives (1-25) have been synthesized and evaluated against β-glucuronidase inhibitory activity. The compounds which actively inhibit β-glucuronidase activity have IC50 values ranging between 4.48 and 46.12 μM and showing better than standard d-saccharic acid 1,4 lactone (IC50=48.4 ± 1.25 μM). Molecular docking provided potential clues to identify interactions between the active molecules and the enzyme which further led us to identify plausible binding mode of all the benzimidazole derivatives. This study confirmed that presence of hydrophilic moieties is crucial to inhibit the human β-glucuronidase.
    Matched MeSH terms: Glycoproteins/chemistry
  10. Kimura Y, Maeda M, Kimupa M, Lai OM, Tan SH, Hon SM, et al.
    Biosci Biotechnol Biochem, 2002 Apr;66(4):820-7.
    PMID: 12036055
    A basic glycoprotein, which was recognized by IgE from oil palm pollinosis patients, has been purified from oil palm pollen (Elaeis guineensis Jacq.), which is a strong allergen and causes severe pollinosis in Malaysia and Singapore. Soluble proteins were extracted from defatted palm pollen with both Tris-HCl buffer (pH 7.8) and Na-acetate buffer (pH 4.0). The allergenic glycoprotein was purified from the total extract to homogeneity with 0.4% yield by a combination of DEAE- and CM-cellulose, SP-HPLC, and gel filtration. The purified oil palm pollen glycoprotein with molecular mass of 31 kDa was recognized by the beta1-2 xylose specific antibody, suggesting this basic glycoprotein bears plant complex type N-glycan(s). The palm pollen basic glycoprotein, designated Ela g Bd 31 K, was recognized by IgE of palm pollinosis patients, suggesting Ela g Bd 31 K should be one of the palm pollen allergens. The preliminary structural analysis of N-glycans linked to glycoproteins of palm pollens showed that the antigenic N-glycans having alpha1-3 fucose and alpha1-2 xylose residues (GlcNAc(2 to approximately 0)Man3Xyl1Fuc(1 to approximately 0)GlcNAc2) actually occur on the palm pollen glycoproteins, in addition to the high-mannose type structures (Man(9 to approximately 5)GlcNAc2).
    Matched MeSH terms: Glycoproteins/chemistry*
  11. Khan KM, Rahim F, Wadood A, Taha M, Khan M, Naureen S, et al.
    Bioorg Med Chem Lett, 2014 Apr 1;24(7):1825-9.
    PMID: 24602903 DOI: 10.1016/j.bmcl.2014.02.015
    Bisindole analogs 1-17 were synthesized and evaluated for their in vitro β-glucuronidase inhibitory potential. Out of seventeen compounds, the analog 1 (IC50=1.62±0.04 μM), 6 (IC50=1.86±0.05 μM), 10 (IC50=2.80±0.29 μM), 9 (IC50=3.10±0.28 μM), 14 (IC50=4.30±0.08 μM), 2 (IC50=18.40±0.09 μM), 19 (IC50=19.90±1.05 μM), 4 (IC50=20.90±0.62 μM), 7 (IC50=21.50±0.77 μM), and 3 (IC50=22.30±0.02 μM) showed superior β-glucuronidase inhibitory activity than the standard (d-saccharic acid 1,4-lactone, IC50=48.40±1.25 μM). In addition, molecular docking studies were performed to investigate the binding interactions of bisindole derivatives with the enzyme. This study has identified a new class of potent β-glucouronidase inhibitors.
    Matched MeSH terms: Glycoproteins/chemistry
  12. Taha M, Ismail NH, Imran S, Wadood A, Rahim F, Al Muqarrabin LM, et al.
    Bioorg Chem, 2016 10;68:15-22.
    PMID: 27414468 DOI: 10.1016/j.bioorg.2016.07.002
    Novel series of disulfide and sulfone hybrid analogs (1-20) were synthesized and characterized through EI-MS and (1)H NMR and evaluated for β-glucuronidase inhibitory potential. All synthesized analogs except 13 and 15 showed excellent β-glucuronidase inhibitory potential with IC50 value ranging in between 2.20-88.16μM as compared to standard d-saccharic acid 1,4 lactone (48.4±1.25μM). Analogs 19, 16, 4, 1, 17, 6, 10, 3, 18, 2, 11, 14 and 5 showed many fold potent activity against β-glucuronidase inhibitor. Structure activity relationship showed that substitution of electron withdrawing groups at ortho as well as para position on phenyl ring increase potency. Electron withdrawing groups at meta position on phenyl ring showed slightly low potency as compared to ortho and para position. The binding interactions were confirmed through molecular docking studies.
    Matched MeSH terms: Glycoproteins/chemistry
  13. Baharudin MS, Taha M, Imran S, Ismail NH, Rahim F, Javid MT, et al.
    Bioorg Chem, 2017 06;72:323-332.
    PMID: 28505547 DOI: 10.1016/j.bioorg.2017.05.005
    Natural products are the main source of motivation to design and synthesize new molecules for drug development. Designing new molecules against β-glucuronidase inhibitory is utmost essential. In this study indole analogs (1-35) were synthesized, characterized using various spectroscopic techniques including 1H NMR and EI-MS and evaluated for their β-glucuronidase inhibitory activity. Most compounds were identified as potent inhibitors for the enzyme with IC50 values ranging between 0.50 and 53.40μM, with reference to standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Structure-activity relationship had been also established. The results obtained from docking studies for the most active compound 10 showed that hydrogen bond donor features as well as hydrogen bonding with (Oε1) of nucleophilic residue Glu540 is believed to be the most importance interaction in the inhibition activity. It was also observed that hydroxyl at fourth position of benzylidene ring acts as a hydrogen bond donor and interacts with hydroxyl (OH) on the side chain of catalysis residue Tyr508. The enzyme-ligand complexed were being stabilized through electrostatic π-anion interaction with acid-base catalyst Glu451 (3.96Å) and thus preventing Glu451 from functioning as proton donor residue.
    Matched MeSH terms: Glycoproteins/chemistry
  14. Abu Tawila ZM, Ismail S, Dadrasnia A, Usman MM
    Molecules, 2018 Oct 18;23(10).
    PMID: 30340415 DOI: 10.3390/molecules23102689
    The production, optimization, and characterization of the bioflocculant QZ-7 synthesized by a novel Bacillus salmalaya strain 139SI isolated from a private farm soil in Selangor, Malaysia, are reported. The flocculating activity of bioflocculant QZ-7 present in the selected strain was found to be 83.3%. The optimal culture for flocculant production was achieved after cultivation at 35.5 °C for 72 h at pH 7 ± 0.2, with an inoculum size of 5% (v/v) and sucrose and yeast extract as carbon and nitrogen sources. The maximum flocculating activity was found to be 92.6%. Chemical analysis revealed that the pure bioflocculant consisted of 79.08% carbohydrates and 15.4% proteins. The average molecular weight of the bioflocculant was calculated to be 5.13 × 10⁵ Da. Infrared spectrometric analysis showed the presence of carboxyl (COO-), hydroxyl (-OH), and amino (-NH₂) groups, polysaccharides and proteins. The bioflocculant QZ-7 exhibited a wide pH stability range from 4 to 7, with a flocculation activity of 85% at pH 7 ± 0.2. In addition, QZ-7 was thermally stable and retained more than 80% of its flocculating activity after being heated at 80 °C for 30 min. SEM analysis revealed that QZ-7 exhibited a clear crystalline brick-shaped structure. After treating wastewater, the bioflocculant QZ-7 showed significant flocculation performance with a COD removal efficiency of 93%, whereas a BOD removal efficiency of 92.4% was observed in the B. salmalaya strain 139SI. These values indicate the promising applications of the bioflocculant QZ-7 in wastewater treatment.
    Matched MeSH terms: Glycoproteins/chemistry
  15. Juvarajah T, Wan-Ibrahim WI, Ashrafzadeh A, Othman S, Hashim OH, Fung SY, et al.
    Breastfeed Med, 2018 11;13(9):631-637.
    PMID: 30362820 DOI: 10.1089/bfm.2018.0057
    BACKGROUND: Bioactive proteins from milk fat globule membrane (MFGM) play extensive roles in cellular processes and defense mechanisms in infants. The aims of this study were to identify differences in protein compositions in human and caprine MFGM using proteomics and evaluate possible nutritional benefits of caprine milk toward an infant's growth, as an alternative when breastfeeding or human milk administration is not possible or inadequate.

    MATERIALS AND METHODS: Human and caprine MFGM proteins were isolated and analyzed, initially by polyacrylamide gel electrophoresis, and subsequently by quadrupole time-of-flight liquid chromatography-mass spectrometry. This was then followed by database search and gene ontology analysis. In general, this method selectively analyzed the abundantly expressed proteins in milk MFGM.

    RESULTS: Human MFGM contains relatively more abundant bioactive proteins compared with caprine. While a total of 128 abundant proteins were detected in the human MFGM, only 42 were found in that of the caprine. Seven of the bioactive proteins were apparently found to coexist in both human and caprine MFGM.

    RESULTS/DISCUSSION: Among the commonly detected MFGM proteins, lactotransferrin, beta-casein, lipoprotein lipase, fatty acid synthase, and butyrophilin subfamily 1 member A1 were highly expressed in human MFGM. On the other hand, alpha-S1-casein and EGF factor 8 protein, which are also nutritionally beneficial, were found in abundance in caprine MFGM. The large number of human MFGM abundant proteins that were generally lacking in caprine appeared to mainly support human metabolic and developmental processes.

    CONCLUSION: Our data demonstrated superiority of human MFGM by having more than one hundred nutritionally beneficial and abundantly expressed proteins, which are clearly lacking in caprine MFGM. The minor similarity in the abundantly expressed bioactive proteins in caprine MFGM, which was detected further, suggests that it is still nutritionally beneficial, and therefore should be included when caprine milk-based formula is used as an alternative.

    Matched MeSH terms: Glycoproteins/chemistry*
  16. Khan AH, Noordin R
    Biotechnol Prog, 2019 03;35(2):e2752.
    PMID: 30457225 DOI: 10.1002/btpr.2752
    Homogeneously glycosylated proteins are essential for analyzing the structure of N-glycans, studying their consequences inside cells, and developing therapeutic glycoproteins. However, the isolation of glycoproteins with homogeneous glycans from human is difficult since glycoforms slightly differ from each other with respect to molecular weight and charge. Microbial expression systems have numerous benefits in expression technology and have gained great attention, because they are more adaptable to the biotechnology industry. While selecting an expression host, the glycosylation pattern must be taken into account, because glycosylation strongly depends on cellular production system and selected production clone. This review discussed the technological developments in glycoengineering of microbial expression systems for humanizing the glycosylation profile and highlighted the expression potential of Leishmania expression system. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2752, 2019.
    Matched MeSH terms: Glycoproteins/chemistry
  17. Taha M, Ullah H, Al Muqarrabun LMR, Khan MN, Rahim F, Ahmat N, et al.
    Eur J Med Chem, 2018 Jan 01;143:1757-1767.
    PMID: 29133042 DOI: 10.1016/j.ejmech.2017.10.071
    Thirty-two (32) bis-indolylmethane-hydrazone hybrids 1-32 were synthesized and characterized by 1HNMR, 13CNNMR and HREI-MS. All compounds were evaluated in vitro for β-glucuronidase inhibitory potential. All analogs showed varying degree of β-glucuronidase inhibitory potential ranging from 0.10 ± 0.01 to 48.50 ± 1.10 μM when compared with the standard drug d-saccharic acid-1,4-lactone (IC50 value 48.30 ± 1.20 μM). Derivatives 1-32 showed the highest β-glucuronidase inhibitory potentials which is many folds better than the standard drug d-saccharic acid-1,4-lactone. Further molecular docking study validated the experimental results. It was proposed that bis-indolylmethane may interact with some amino acid residues located within the active site of β-glucuronidase enzyme. This study has culminated in the identification of a new class of potent β-glucuronidase inhibitors.
    Matched MeSH terms: Glycoproteins/chemistry
  18. Taha M, Ismail NH, Imran S, Rahim F, Wadood A, Khan H, et al.
    Bioorg Chem, 2016 10;68:56-63.
    PMID: 27454618 DOI: 10.1016/j.bioorg.2016.07.008
    Hybrid bisindole-thiosemicarbazides analogs (1-18) were synthesized and screened for β-glucuronidase activity. All compounds showed varied degree of β-glucuronidase inhibitory potential when compared with standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Compounds 4, 7, 9, 6, 5, 12, 17 and 18 showed exceptional β-glucuronidase inhibition with IC50 values ranging from 0.1 to 5.7μM. Compounds 1, 3, 8, 16, 13, 2 and 14 also showed better activities than standard with IC50 values ranging from 7.12 to 15.0μM. The remaining compounds 10, 11, and 15 showed good inhibitory potential with IC50 values 33.2±0.75, 21.4±0.30 and 28.12±0.25μM respectively. Molecular docking studies were carried out to confirm the binding interaction of the compounds.
    Matched MeSH terms: Glycoproteins/chemistry
  19. Yap ML, Klose T, Urakami A, Hasan SS, Akahata W, Rossmann MG
    Proc Natl Acad Sci U S A, 2017 12 26;114(52):13703-13707.
    PMID: 29203665 DOI: 10.1073/pnas.1713166114
    Cleavage of the alphavirus precursor glycoprotein p62 into the E2 and E3 glycoproteins before assembly with the nucleocapsid is the key to producing fusion-competent mature spikes on alphaviruses. Here we present a cryo-EM, 6.8-Å resolution structure of an "immature" Chikungunya virus in which the cleavage site has been mutated to inhibit proteolysis. The spikes in the immature virus have a larger radius and are less compact than in the mature virus. Furthermore, domains B on the E2 glycoproteins have less freedom of movement in the immature virus, keeping the fusion loops protected under domain B. In addition, the nucleocapsid of the immature virus is more compact than in the mature virus, protecting a conserved ribosome-binding site in the capsid protein from exposure. These differences suggest that the posttranslational processing of the spikes and nucleocapsid is necessary to produce infectious virus.
    Matched MeSH terms: Glycoproteins/chemistry*
  20. Diederich S, Maisner A
    Ann N Y Acad Sci, 2007 Apr;1102:39-50.
    PMID: 17470910
    Nipah virus (NiV) is a highly pathogenic paramyxovirus, which emerged in 1998 from fruit bats in Malaysia and caused an outbreak of severe respiratory disease in pigs and fatal encephalitis in humans with high mortality rates. In contrast to most paramyxoviruses, NiV can infect a large variety of mammalian species. Due to this broad host range, its zoonotic potential, its high pathogenicity for humans, and the lack of effective vaccines or therapeutics, NiV was classified as a biosafety level 4 pathogen. This article provides an overview of the molecular characteristics of NiV focusing on the structure, functions, and unique biological properties of the two NiV surface glycoproteins, the receptor-binding G protein, and the fusion protein F. Since viral glycoproteins are major determinants for cell tropism and virus spread, a detailed knowledge of these proteins can help to understand the molecular basis of viral pathogenicity.
    Matched MeSH terms: Glycoproteins/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links