Displaying all 4 publications

Abstract:
Sort:
  1. Abdul Aris, M. H., Lee, H. Y., Hussain, N., Ghazali, H., Nordin, W. N., Mahyudin, N. A.
    MyJurnal
    The objective of this study was to determine microbiological quality of gulai tempoyak paste (GTP) added with three different leaf; Vietnamese coriander, turmeric and asam gelugor. The GTP was cooked for 10 minutes with control temperature (60-70°C) and the leaf were added at 2, 5 and 8 minutes during the cooking time to give exposure times of 8, 5 and 2 minutes of the leaf to GTP. GTP without addition of leaf was treated as control and all the prepared GTPs were stored at 30°C for 2 days before analysed using total plate count (TPC) and yeast and mould count (YMC). The addition of asam gelugor leaf to GTP for 5 minutes of the cooking period significantly (p > 0.05) reduced TPC (log10 3.54 CFU/g) compared to Vietnamese coriander (log10 4.67 CFU/g) and turmeric leaf (log10 4.70 CFU/g). Asam gelugor leaf also showed a significant difference in TPC reduction (log10 4.44 CFU/g) when added to GTP for 8 minutes compared to Vietnamese coriander (log10 5.10 CFU/g), but was insignificant to turmeric leaf (log10 4.71 CFU/g). In conclusion, there are significant effects on microbiological quality of GTP when added with Vietnamese coriander, turmeric and asam gelugor leaf at different exposure time based on TPC and YMC.
    Matched MeSH terms: Guanosine Triphosphate
  2. Quah SY, Tan MS, Teh YH, Stanslas J
    Pharmacol Ther, 2016 06;162:35-57.
    PMID: 27016467 DOI: 10.1016/j.pharmthera.2016.03.010
    Oncogenic rat sarcoma (Ras) is linked to the most fatal cancers such as those of the pancreas, colon, and lung. Decades of research to discover an efficacious drug that can block oncogenic Ras signaling have yielded disappointing results; thus, Ras was considered "undruggable" until recently. Inhibitors that directly target Ras by binding to previously undiscovered pockets have been recently identified. Some of these molecules are either isolated from natural products or derived from natural compounds. In this review, we described the potential of these compounds and other inhibitors of Ras signaling in drugging Ras. We highlighted the modes of action of these compounds in suppressing signaling pathways activated by oncogenic Ras, such as mitogen-activated protein kinase (MAPK) signaling and the phosphoinositide-3-kinase (PI3K) pathways. The anti-Ras strategy of these compounds can be categorized into four main types: inhibition of Ras-effector interaction, interference of Ras membrane association, prevention of Ras-guanosine triphosphate (GTP) formation, and downregulation of Ras proteins. Another promising strategy that must be validated experimentally is enhancement of the intrinsic Ras-guanosine triphosphatase (GTPase) activity by small chemical entities. Among the inhibitors of Ras signaling that were reported thus far, salirasib and TLN-4601 have been tested for their clinical efficacy. Although both compounds passed phase I trials, they failed in their respective phase II trials. Therefore, new compounds of natural origin with relevant clinical activity against Ras-driven malignancies are urgently needed. Apart from salirasib and TLN-4601, some other compounds with a proven inhibitory effect on Ras signaling include derivatives of salirasib, sulindac, polyamine, andrographolide, lipstatin, levoglucosenone, rasfonin, and quercetin.
    Matched MeSH terms: Guanosine Triphosphate/metabolism
  3. Kumar S, Sharma D, Narasimhan B, Ramasamy K, Shah SAA, Lim SM, et al.
    BMC Chem, 2019 Dec;13(1):96.
    PMID: 31355369 DOI: 10.1186/s13065-019-0613-8
    Heterocyclic 1,3-diazine nucleus is a valuable pharmacophore in the field of medicinal chemistry and exhibit a wide spectrum of biological activities. PharmMapper, a robust online tool used for establishing the target proteins based on reverse pharmacophore mapping. PharmMapper study is carried out to explore the pharmacological activity of 1,3-diazine derivatives using reverse docking program. PharmMapper, an open web server was used to recognize for all the feasible target proteins for the developed compounds through reverse pharmacophore mapping. The results were analyzed via molecular docking with maestro v11.5 (Schrodinger 2018-1) using GTPase HRas as possible target. The molecular docking studies displayed the binding behavior of 1,3-diazine within GTP binding pocket. From the docking study compounds s3 and s14 showed better docked score with anticancer potency against cancer cell line (HCT116). Hence, the GTPase HRas may be the possible target of 1,3-diazine derivatives for their anticancer activity where the retrieved information may be quite useful for developing rational drug designing. Furthermore the selected 1,3-diazine compounds were evaluated for their in vitro anticancer activity against murine macrophages cell line. 1,3-Diazine compounds exhibited good selectivity of the compounds towards the human colorectal carcinoma cell line instead of the murine macrophages. The toxicity study of the most active compounds was also performed on non cancerous HEK-293 cell line.
    Matched MeSH terms: Guanosine Triphosphate
  4. Kumar S, Singh J, Narasimhan B, Shah SAA, Lim SM, Ramasamy K, et al.
    Chem Cent J, 2018 Oct 22;12(1):106.
    PMID: 30345469 DOI: 10.1186/s13065-018-0475-5
    BACKGROUND: Pyrimidine is an important pharmacophore in the field of medicinal chemistry and exhibit a broad spectrum of biological potentials. A study was carried out to identify the target protein of potent bis-pyrimidine derivatives using reverse docking program. PharmMapper, a robust online tool was used for identifying the target proteins based on reverse pharmacophore mapping. The murine macrophage (RAW 264.7) and human embryonic kidney (HEK-293) cancer cell line used for selectivity and safety study.

    METHODS: An open web server PharmMapper was used to identify the possible target of the developed compounds through reverse pharmacophore mapping. The results were analyzed and validated through docking with Schrodinger v9.6 using 10 protein GTPase HRas selected as possible target. The docking studies with Schrödinger validated the binding behavior of bis-pyrimidine compounds within GTP binding pocket. MTT and sulforhodamine assay were used as antiproliferative activity.

    RESULTS AND DISCUSSION: The protein was found one of the top scored targets of the compound 18, hence, the GTPase HRas protein was found crucial to be targeted for competing cancer. Toxicity study demonstrated the significant selectivity of most active compounds, 12, 16 and 18 showed negligible cell toxicity at their IC50 concentration.

    CONCLUSION: From the results, we may conclude that GTPase HRas as a possible target of studied bis-pyrimidine derivatives where the retrieved information may be quite useful for rational drug designing.

    Matched MeSH terms: Guanosine Triphosphate
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links