Displaying all 4 publications

Abstract:
Sort:
  1. Teh CK, Muaz SD, Tangaya P, Fong PY, Ong AL, Mayes S, et al.
    Sci Rep, 2017 06 08;7(1):3118.
    PMID: 28596562 DOI: 10.1038/s41598-017-03225-7
    The fundamental trait in selective breeding of oil palm (Eleais guineensis Jacq.) is the shell thickness surrounding the kernel. The monogenic shell thickness is inversely correlated to mesocarp thickness, where the crude palm oil accumulates. Commercial thin-shelled tenera derived from thick-shelled dura × shell-less pisifera generally contain 30% higher oil per bunch. Two mutations, sh MPOB (M1) and sh AVROS (M2) in the SHELL gene - a type II MADS-box transcription factor mainly present in AVROS and Nigerian origins, were reported to be responsible for different fruit forms. In this study, we have tested 1,339 samples maintained in Sime Darby Plantation using both mutations. Five genotype-phenotype discrepancies and eight controls were then re-tested with all five reported mutations (sh AVROS , sh MPOB , sh MPOB2 , sh MPOB3 and sh MPOB4 ) within the same gene. The integration of genotypic data, pedigree records and shell formation model further explained the haploinsufficiency effect on the SHELL gene with different number of functional copies. Some rare mutations were also identified, suggesting a need to further confirm the existence of cis-compound mutations in the gene. With this, the prediction accuracy of fruit forms can be further improved, especially in introgressive hybrids of oil palm. Understanding causative variant segregation is extremely important, even for monogenic traits such as shell thickness in oil palm.
    Matched MeSH terms: Haploinsufficiency/genetics*
  2. Jeevaratnam K, Guzadhur L, Goh YM, Grace AA, Huang CL
    Acta Physiol (Oxf), 2016 Feb;216(2):186-202.
    PMID: 26284956 DOI: 10.1111/apha.12577
    Normal cardiac excitation involves orderly conduction of electrical activation and recovery dependent upon surface membrane, voltage-gated, sodium (Na(+) ) channel α-subunits (Nav 1.5). We summarize experimental studies of physiological and clinical consequences of loss-of-function Na(+) channel mutations. Of these conditions, Brugada syndrome (BrS) and progressive cardiac conduction defect (PCCD) are associated with sudden, often fatal, ventricular tachycardia (VT) or fibrillation. Mouse Scn5a(+/-) hearts replicate important clinical phenotypes modelling these human conditions. The arrhythmic phenotype is associated not only with the primary biophysical change but also with additional, anatomical abnormalities, in turn dependent upon age and sex, each themselves exerting arrhythmic effects. Available evidence suggests a unified binary scheme for the development of arrhythmia in both BrS and PCCD. Previous biophysical studies suggested that Nav 1.5 deficiency produces a background electrophysiological defect compromising conduction, thereby producing an arrhythmic substrate unmasked by flecainide or ajmaline challenge. More recent reports further suggest a progressive decline in conduction velocity and increase in its dispersion particularly in ageing male Nav 1.5 haploinsufficient compared to WT hearts. This appears to involve a selective appearance of slow conduction at the expense of rapidly conducting pathways with changes in their frequency distributions. These changes were related to increased cardiac fibrosis. It is thus the combination of the structural and biophysical changes both accentuating arrhythmic substrate that may produce arrhythmic tendency. This binary scheme explains the combined requirement for separate, biophysical and structural changes, particularly occurring in ageing Nav 1.5 haploinsufficient males in producing clinical arrhythmia.
    Matched MeSH terms: Haploinsufficiency
  3. den Hoed J, de Boer E, Voisin N, Dingemans AJM, Guex N, Wiel L, et al.
    Am J Hum Genet, 2021 02 04;108(2):346-356.
    PMID: 33513338 DOI: 10.1016/j.ajhg.2021.01.007
    Whereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene, SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carrying SATB1 variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression, and a severe phenotype. In contrast, variants predicted to result in haploinsufficiency are associated with a milder clinical presentation. A similarly mild phenotype is observed for individuals with premature protein truncating variants that escape nonsense-mediated decay, which are transcriptionally active but mislocalized in the cell. Our results suggest that in-depth mutation-specific genotype-phenotype studies are essential to capture full disease complexity and to explain phenotypic variability.
    Matched MeSH terms: Haploinsufficiency
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links