Displaying all 19 publications

  1. Hsu PI, Yamaoka Y, Goh KL, Manfredi M, Wu DC, Mahachai V
    Biomed Res Int, 2015;2015:278308.
    PMID: 26078943 DOI: 10.1155/2015/278308
    Matched MeSH terms: Helicobacter pylori/pathogenicity*
  2. Quach DT, Vilaichone RK, Vu KV, Yamaoka Y, Sugano K, Mahachai V
    Asian Pac J Cancer Prev, 2018 Dec 25;19(12):3565-3569.
    PMID: 30583684
    Background: Helicobacter pylori (H. pylori) infection is currently considered as an infectious disease irrespective of symptoms and stage of disease. This study aimed to survey the impact of H. pylori infection and the current management approaches in Southeast Asian countries.
    Materials and methods: This is a survey among 26 experts from 9 Southeast Asian countries (Cambodia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand and Vietnam), who attended a meeting to develop the ASEAN consensus on H. pylori management in November 2015.
    Results: The prevalence of H. pylori varied significantly from 20% to 69% among countries, highest in Myanmar and lowest in Malaysia. The rate of H. pylori infection in patients with gastritis, peptic ulcer disease and gastric cancer (GC) also varied significantly, not only among countries but also among regions within the same country. The most common method for H. pylori diagnosis before treatment was rapid urease test, followed by urea breath test. In multi-ethnic countries, some ethnic groups including Chinese, Batak and Minahasanese were considered as having higher risk of GC. There have been no national screening programs for GC in all countries, and a majority of patients with GC were diagnosed in advanced stages with very poor 5-year survival.
    Conclusions: The prevalence of H. pylori infection and its infection rates in related gastrointestinal diseases were significantly different among Southeast Asian countries. The prognosis of patients with GC in the region was very poor. The result of this survey is a platform for future international and regional research collaboration.
    Matched MeSH terms: Helicobacter pylori/pathogenicity
  3. Kumar N, Mariappan V, Baddam R, Lankapalli AK, Shaik S, Goh KL, et al.
    Nucleic Acids Res, 2015 Jan;43(1):324-35.
    PMID: 25452339 DOI: 10.1093/nar/gku1271
    The discordant prevalence of Helicobacter pylori and its related diseases, for a long time, fostered certain enigmatic situations observed in the countries of the southern world. Variation in H. pylori infection rates and disease outcomes among different populations in multi-ethnic Malaysia provides a unique opportunity to understand dynamics of host-pathogen interaction and genome evolution. In this study, we extensively analyzed and compared genomes of 27 Malaysian H. pylori isolates and identified three major phylogeographic lineages: hspEastAsia, hpEurope and hpSouthIndia. The analysis of the virulence genes within the core genome, however, revealed a comparable pathogenic potential of the strains. In addition, we identified four genes limited to strains of East-Asian lineage. Our analyses identified a few strain-specific genes encoding restriction modification systems and outlined 311 core genes possibly under differential evolutionary constraints, among the strains representing different ethnic groups. The cagA and vacA genes also showed variations in accordance with the host genetic background of the strains. Moreover, restriction modification genes were found to be significantly enriched in East-Asian strains. An understanding of these variations in the genome content would provide significant insights into various adaptive and host modulation strategies harnessed by H. pylori to effectively persist in a host-specific manner.
    Matched MeSH terms: Helicobacter pylori/pathogenicity
  4. Sukri A, Hanafiah A, Kosai NR, Mohamed Taher M, Mohamed Rose I
    Helicobacter, 2016 Oct;21(5):417-27.
    PMID: 26807555 DOI: 10.1111/hel.12295
    Comprehensive immunophenotyping cluster of differentiation (CD) antigens in gastric adenocarcinoma, specifically between Helicobacter pylori-infected and -uninfected gastric cancer patients by using DotScan(™) antibody microarray has not been conducted. Current immunophenotyping techniques include flow cytometry and immunohistochemistry are limited to the use of few antibodies for parallel examination. We used DotScan(™) antibody microarray consisting 144 CD antibodies to determine the distribution of CD antigens in gastric adenocarcinoma cells and to elucidate the effect of H. pylori infection toward CD antigen expression in gastric cancer.
    Matched MeSH terms: Helicobacter pylori/pathogenicity*
  5. Ansari S, Yamaoka Y
    Expert Rev Anti Infect Ther, 2020 10;18(10):987-996.
    PMID: 32536287 DOI: 10.1080/14787210.2020.1782739
    Introduction Helicobacter pylori causes, via the influence of several virulence factors, persistent infection of the stomach, which leads to severe complications. Vacuolating cytotoxin A (VacA) is observed in almost all clinical strains of H. pylori; however, only some strains produce the toxigenic and pathogenic VacA, which is influenced by the gene sequence variations. VacA exerts its action by causing cell vacuolation and apoptosis. We performed a PubMed search to review the latest literatures published in English language. Areas covered Articles regarding H. pylori VacA and its genotypes, architecture, internalization, and role in gastric infection and pathogenicity are reviewed. We included the search for recently published literature until January 2020. Expert opinion H. pylori VacA plays a crucial role in severe gastric pathogenicity. In addition, VacA mediated in vivo bacterial survival leads to persistent infection and an enhanced bacterial evasion from the action of antibiotics and the innate host defense system, which leads to drug evasion. VacA as a co-stimulator for the CagA phosphorylation may exert a synergistic effect playing an important role in the CagA-mediated pathogenicity.
    Matched MeSH terms: Helicobacter pylori/pathogenicity*
  6. Amjad N, Osman HA, Razak NA, Kassian J, Din J, bin Abdullah N
    World J Gastroenterol, 2010 Sep 21;16(35):4443-7.
    PMID: 20845512
    AIM: To study the presence of Helicobacter pylori (H. pylori) virulence factors and clinical outcome in H. pylori infected patients.

    METHODS: A prospective analysis of ninety nine H. pylori-positive patients who underwent endoscopy in our Endoscopy suite were included in this study. DNA was isolated from antral biopsy samples and the presence of cagA, iceA, and iceA2 genotypes were determined by polymerase chain reaction and a reverse hybridization technique. Screening for H. pylori infection was performed in all patients using the rapid urease test (CLO-Test).

    RESULTS: From a total of 326 patients who underwent endoscopy for upper gastrointestinal symptoms, 99 patients were determined to be H. pylori-positive. Peptic ulceration was seen in 33 patients (33%). The main virulence strain observed in this cohort was the cagA gene isolated in 43 patients. cagA was associated with peptic ulcer pathology in 39.5% (17/43) and in 28% (16/56) of non-ulcer patients. IceA1 was present in 29 patients (29%) and iceA2 in 15 patients (15%). Ulcer pathology was seen in 39% (11/29) of patients with iceA1, while 31% (22/70) had normal findings. The corresponding values for iceA2 were 33% (5/15) and 33% (28/84), respectively.

    CONCLUSION: Virulence factors were not common in our cohort. The incidence of factors cagA, iceA1 and iceA2 were very low although variations were noted in different ethnic groups.

    Matched MeSH terms: Helicobacter pylori/pathogenicity
  7. Butt J, Jenab M, Pawlita M, Tjønneland A, Kyrø C, Boutron-Ruault MC, et al.
    Cancer Epidemiol Biomarkers Prev, 2020 07;29(7):1475-1481.
    PMID: 32332031 DOI: 10.1158/1055-9965.EPI-19-1545
    BACKGROUND: While Helicobacter pylori (H. pylori) is the major cause of gastric cancer, it has also been suggested to be involved in colorectal cancer development. However, prospective studies addressing H. pylori and colorectal cancer are sparse and inconclusive. We assessed the association of antibody responses to H. pylori proteins with colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.

    METHODS: We applied H. pylori multiplex serology to measure antibody responses to 13 H. pylori proteins in prediagnostic serum samples from 485 colorectal cancer cases and 485 matched controls nested within the EPIC study. Odds ratios (OR) and 95% confidence intervals (CI) were calculated using multivariable conditional logistic regression to estimate the association of H. pylori overall and protein-specific seropositivity with odds of developing colorectal cancer.

    RESULTS: Fifty-one percent of colorectal cancer cases were H. pylori seropositive compared with 44% of controls, resulting in an OR of 1.36 (95% CI, 1.00-1.85). Among the 13 individual H. pylori proteins, the association was driven mostly by seropositivity to Helicobacter cysteine-rich protein C (HcpC; OR: 1.66; 95% CI, 1.19-2.30) and Vacuolating cytotoxin A (VacA) (OR: 1.34; 95% CI, 0.99-1.82), the latter being nonstatistically significant only in the fully adjusted model.

    CONCLUSIONS: In this prospective multicenter European study, antibody responses to H. pylori proteins, specifically HcpC and VacA, were associated with an increased risk of developing colorectal cancer.

    IMPACT: Biological mechanisms for a potential causal role of H. pylori in colorectal carcinogenesis need to be elucidated, and subsequently whether H. pylori eradication may decrease colorectal cancer incidence.

    Matched MeSH terms: Helicobacter pylori/pathogenicity*
  8. Tan AH, Mahadeva S, Marras C, Thalha AM, Kiew CK, Yeat CM, et al.
    Parkinsonism Relat Disord, 2015 Mar;21(3):221-5.
    PMID: 25560322 DOI: 10.1016/j.parkreldis.2014.12.009
    BACKGROUND: Some studies have suggested that chronic Helicobacter pylori (HP) infection can aggravate the neurodegenerative process in Parkinson's disease (PD), and targeted intervention could potentially modify the course of this disabling disease. We aimed to study the impact of HP infection on motor function, gastrointestinal symptoms, and quality of life in a large cohort of PD patients.
    METHODS: 102 consecutive PD patients underwent (13)C urea breath testing and blinded evaluations consisting of the Unified Parkinson's Disease Rating Scale (UPDRS) including "On"-medication motor examination (Part III), objective and quantitative measures of bradykinesia (Purdue Pegboard and timed gait), Leeds Dyspepsia Questionnaire, and PDQ-39 (a health-related quality of life questionnaire).
    RESULTS: 32.4% of PD patients were HP-positive. HP-positive patients were older (68.4 ± 7.3 vs. 63.8 ± 8.6 years, P = 0.009) and had worse motor function (UPDRS Part III 34.0 ± 13.0 vs. 27.3 ± 10.0, P = 0.04; Pegboard 6.4 ± 3.3 vs. 8.0 ± 2.7 pins, P = 0.04; and timed gait 25.1 ± 25.4 vs. 15.5 ± 7.6 s, P = 0.08). In the multivariate analysis, HP status demonstrated significant main effects on UPDRS Part III and timed gait. The association between HP status and these motor outcomes varied according to age. Gastrointestinal symptoms and PDQ-39 Summary Index scores did not differ between the two groups.
    CONCLUSIONS: This is the largest cross-sectional study to demonstrate an association between HP positivity and worse PD motor severity.
    KEYWORDS: Gastrointestinal dysfunction; Helicobacter pylori; Parkinson's disease
    Matched MeSH terms: Helicobacter pylori/pathogenicity*
  9. Yap TW, Leow AH, Azmi AN, Francois F, Perez-Perez GI, Blaser MJ, et al.
    PLoS One, 2015;10(8):e0135771.
    PMID: 26291794 DOI: 10.1371/journal.pone.0135771
    More than half of the world's adults carry Helicobacter pylori. The eradication of H. pylori may affect the regulation of human metabolic hormones. The aim of this study was to evaluate the effect of H. pylori eradication on meal-associated changes in appetite-controlled insulinotropic and digestive hormones, and to assess post-eradication changes in body mass index as part of a currently on-going multicentre ESSAY (Eradication Study in Stable Adults/Youths) study.
    Matched MeSH terms: Helicobacter pylori/pathogenicity
  10. Rajendra S, Ackroyd R, Robertson IK, Ho JJ, Karim N, Kutty KM
    Helicobacter, 2007 Apr;12(2):177-83.
    PMID: 17309756
    Ethnic differences in gastroesophageal reflux disease (GERD) and its complications as well as racial variations in the prevalence of Helicobacter pylori infection are well documented. Nevertheless, the association between reflux disease, H. pylori, and race has not been adequately explored.
    Matched MeSH terms: Helicobacter pylori/pathogenicity
  11. Tan HJ, Rizal AM, Rosmadi MY, Goh KL
    J Gastroenterol Hepatol, 2006 Jan;21(1 Pt 1):110-5.
    PMID: 16706821
    The role of Helicobacter pylori (HP) in non-ulcer dyspepsia is debatable. Eradicating HP will help a small group of non-ulcer dyspeptic patients. However, it is unclear which subgroup of patients will benefit from eradication therapy. The aim of the present study was to compare the cagA and cagE status, as well as vacA genotypes, of HP in non-ulcer dyspeptic patients who responded successfully to eradication therapy compared with those patients who did not.
    Matched MeSH terms: Helicobacter pylori/pathogenicity
  12. Tan HJ, Rizal AM, Rosmadi MY, Goh KL
    J Gastroenterol Hepatol, 2005 Apr;20(4):589-94.
    PMID: 15836708
    There is a geographic variation in Helicobacter pylori (HP) genotypes and virulence factors. Cytotoxin associated genes A (cagA) and E (cagE), and certain vacuolating cytotoxin (vacA) genotypes are associated with peptic ulcer disease (PUD). There is also a different prevalence of PUD among different ethnic groups in Malaysia. The present study compared the distribution of vacA alleles and cagA and cagE status in three ethnic groups residing in Kuala Lumpur, Malaysia, and their association with clinical outcome.
    Matched MeSH terms: Helicobacter pylori/pathogenicity
  13. Huang J, Zagai U, Hallmans G, Nyrén O, Engstrand L, Stolzenberg-Solomon R, et al.
    Int J Cancer, 2017 04 15;140(8):1727-1735.
    PMID: 28032715 DOI: 10.1002/ijc.30590
    The association between H. pylori infection and pancreatic cancer risk remains controversial. We conducted a nested case-control study with 448 pancreatic cancer cases and their individually matched control subjects, based on the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, to determine whether there was an altered pancreatic cancer risk associated with H. pylori infection and chronic corpus atrophic gastritis. Conditional logistic regression models were applied to calculate odds ratios (ORs) and corresponding 95% confidence intervals (CIs), adjusted for matching factors and other potential confounders. Our results showed that pancreatic cancer risk was neither associated with H. pylori seropositivity (OR = 0.96; 95% CI: 0.70, 1.31) nor CagA seropositivity (OR = 1.07; 95% CI: 0.77, 1.48). We also did not find any excess risk among individuals seropositive for H. pylori but seronegative for CagA, compared with the group seronegative for both antibodies (OR = 0.94; 95% CI: 0.63, 1.38). However, we found that chronic corpus atrophic gastritis was non-significantly associated with an increased pancreatic cancer risk (OR = 1.35; 95% CI: 0.77, 2.37), and although based on small numbers, the excess risk was particularly marked among individuals seronegative for both H. pylori and CagA (OR = 5.66; 95% CI: 1.59, 20.19, p value for interaction pylori infection and pancreatic cancer risk in western European populations. However, the suggested association between chronic corpus atrophic gastritis and pancreatic cancer risk warrants independent verification in future studies, and, if confirmed, further studies on the underlying mechanisms.
    Matched MeSH terms: Helicobacter pylori/pathogenicity
  14. Ansari S, Yamaoka Y
    Int J Mol Sci, 2020 Oct 08;21(19).
    PMID: 33050101 DOI: 10.3390/ijms21197430
    Helicobacter pylori causes persistent infection in the gastric epithelium of more than half of the world's population, leading to the development of severe complications such as peptic ulcer diseases, gastric cancer, and gastric mucosa-associated lymphoid tissue (MALT) lymphoma. Several virulence factors, including cytotoxin-associated gene A (CagA), which is translocated into the gastric epithelium via the type 4 secretory system (T4SS), have been indicated to play a vital role in disease development. Although infection with strains harboring the East Asian type of CagA possessing the EPIYA-A, -B, and -D sequences has been found to potentiate cell proliferation and disease pathogenicity, the exact mechanism of CagA involvement in disease severity still remains to be elucidated. Therefore, we discuss the possible role of CagA in gastric pathogenicity.
    Matched MeSH terms: Helicobacter pylori/pathogenicity*
  15. Pabalan N, Jarjanazi H, Ozcelik H
    J Gastrointest Cancer, 2014 Sep;45(3):334-41.
    PMID: 24756832 DOI: 10.1007/s12029-014-9610-2
    BACKGROUND: Reported associations of capsaicin with gastric cancer development have been conflicting. Here, we examine 10 published articles that explore these associations using 2,452 cases and 3,996 controls.

    METHODS: We used multiple search strategies in MEDLINE through PubMed to seek for suitable articles that had case-control design with gastric cancer as outcome.

    RESULTS: The outcomes of our study shows protection (odds ratio [OR] 0.55, P = 0.003) and susceptibility (OR 1.94, P = 0.0004), both significant with low and medium-high intake of capsaicin, respectively, although under relatively heterogeneous conditions (P(heterogeneity) = <0.0001). Outlier analysis resulted in loss of overall heterogeneity (P = 0.14) without affecting the pooled ORs. Among the subgroups, low intake elicited protection in both Korean (OR 0.37) and Mexican (OR 0.63) populations while high intake rendered these subgroups susceptible (OR 2.96 and OR 1.57, respectively). These subgroup values were highly significant (P = 0.0001-0.01) obtained in heterogeneous conditions (P(heterogeneity) pylori (OR 0.60 and 1.69) effects were highly significant (P 

    Matched MeSH terms: Helicobacter pylori/pathogenicity
  16. Alfizah H, Ramelah M, Rizal AM, Anwar AS, Isa MR
    Helicobacter, 2012 Oct;17(5):340-9.
    PMID: 22967117 DOI: 10.1111/j.1523-5378.2012.00956.x
    Polymorphisms of Helicobacter pylori cagA and vacA genes do exist and may contribute to differences in H. pylori infection and gastroduodenal diseases among races in the Malaysian population. This study was conducted to characterize the polymorphisms in H. pylori cagA and vacA in Malaysian population.
    Matched MeSH terms: Helicobacter pylori/pathogenicity*
  17. Tan GM, Looi CY, Fernandez KC, Vadivelu J, Loke MF, Wong WF
    Sci Rep, 2015;5:11046.
    PMID: 26078204 DOI: 10.1038/srep11046
    Helicobacter pylori at multiplicity of infection (MOI ≥ 50) have been shown to cause apoptosis in RAW264.7 monocytic macrophage cells. Because chronic gastric infection by H. pylori results in the persistence of macrophages in the host's gut, it is likely that H. pylori is present at low to moderate, rather than high numbers in the infected host. At present, the effect of low-MOI H. pylori infection on macrophage has not been fully elucidated. In this study, we investigated the genome-wide transcriptional regulation of H. pylori-infected RAW264.7 cells at MOI 1, 5 and 10 in the absence of cellular apoptosis. Microarray data revealed up- and down-regulation of 1341 and 1591 genes, respectively. The expression of genes encoding for DNA replication and cell cycle-associated molecules, including Aurora-B kinase (AurkB) were down-regulated. Immunoblot analysis verified the decreased expression of AurkB and downstream phosphorylation of Cdk1 caused by H. pylori infection. Consistently, we observed that H. pylori infection inhibited cell proliferation and progression through the G1/S and G2/M checkpoints. In summary, we suggest that H. pylori disrupts expression of cell cycle-associated genes, thereby impeding proliferation of RAW264.7 cells, and such disruption may be an immunoevasive strategy utilized by H. pylori.
    Matched MeSH terms: Helicobacter pylori/pathogenicity
  18. Maran S, Lee YY, Xu S, Rajab NS, Hasan N, Syed Abdul Aziz SH, et al.
    World J Gastroenterol, 2013 Jun 21;19(23):3615-22.
    PMID: 23801863 DOI: 10.3748/wjg.v19.i23.3615
    To identify genes associated with gastric precancerous lesions in Helicobacter pylori (H. pylori)-susceptible ethnic Malays.
    Matched MeSH terms: Helicobacter pylori/pathogenicity*
  19. Khalilpour A, Santhanam A, Wei LC, Saadatnia G, Velusamy N, Osman S, et al.
    Asian Pac J Cancer Prev, 2013;14(3):1635-42.
    PMID: 23679248
    Helicobacter pylori antigen was prepared from an isolate from a patient with a duodenal ulcer. Serum samples were obtained from culture-positive H. pylori infected patients with duodenal ulcers, gastric ulcers and gastritis (n=30). As controls, three kinds of sera without detectable H. pylori IgG antibodies were used: 30 from healthy individuals without history of gastric disorders, 30 from patients who were seen in the endoscopy clinic but were H. pylori culture negative and 30 from people with other diseases. OFF-GEL electrophoresis, SDS-PAGE and Western blots of individual serum samples were used to identify protein bands with good sensitivity and specificity when probed with the above sera and HRP-conjugated anti-human IgG. Four H. pylori protein bands showed good (≥ 70%) sensitivity and high specificity (98-100%) towards anti-Helicobacter IgG antibody in culture- positive patients sera and control sera, respectively. The identities of the antigenic proteins were elucidated by mass spectrometry. The relative molecular weights and the identities of the proteins, based on MALDI TOF/ TOF, were as follows: CagI (25 kDa), urease G accessory protein (25 kDa), UreB (63 kDa) and proline/pyrroline- 5-carboxylate dehydrogenase (118 KDa). These identified proteins, singly and/or in combinations, may be useful for diagnosis of H. pylori infection in patients.
    Matched MeSH terms: Helicobacter pylori/pathogenicity
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links