Displaying all 4 publications

Abstract:
Sort:
  1. Neesha Sundramoorthy, Khaiteri R., Jer Ming Low, Chan Soon Thim Darren
    MyJurnal
    Introduction: Artemether and lumefantrine was registered as Riamet in Switzerland in 1999 and is commonly used in Keningau Hospital for managing uncomplicated malaria. Riamet works at the food vacoule of the malarial parasite, where they interfere with the conversion of heme into haemozoin. Case description: We report a case of Riamet induced prolonged corrected QT interval (QTc) in a 37 year old gentleman admitted for severe malaria (hypotension) with normal QTc of 420msc on presentation. Upon starting Riamet, he developed bradycardia and ECG showed sinus bradycardia with prolonged QTc of 551msec and no arrythmias. Echocardiography showed no structural heart abnormalities. All electrolytes were within normal range. He was monitored in cardiac care unit with decision to complete 6 doses of Riamet. Patient was started on Dopamine infusion which maintained his blood pressure and heart rate within normal range. 5 days post Riamet completion, his heart rate improved and dopamine infusion was tapered off and QTc normalized to 407msc. Discussion: The most common mechanism of drugs causing QT inter-val prolongation is by blocking the human ether-à-go-go related gene (hERG) potassium channel. Blockage of the hEGR channel lengthens ventricular re-polarization and duration of ventricular action potential which is reflected in ECG as prolonged QT interval. In the in-vitro whole cell patch clamp study, lumefantrine and its metabolite desbu-tyl-lumefantrine showed a concentration-dependent inhibition of the hERG current. The period of QTc prolongation was 3.5 to 4 days after the last dose of the standard 6 dose regimen. Conclusion: Riamet induced prolonged QTc is a very rare complication. A baseline electrocardiography is therefore imminent for every patient prior to initiation of this medication to avoid cardiac arrythmias.
    Matched MeSH terms: Hemeproteins
  2. Pan B, Pei FQ, Ruan CW, Lin RX, Cen YZ, Liu MR, et al.
    PMID: 30141606
    Objective: To diagnose and treat the first imported active case of Plasmodium knowlesi infection in China.

    Methods: The clinical information of the patient was collected. Microscopy of blood smear was conducted after Giemsa staining. Genomic DNA was extracted from blood, and PCR was conducted to amplify rDNA. The PCR products were sequenced and analyzed with BLAST

    Results: The patient returned from a one-week tour in a tropical rain forest in Malaysia. The first disease attack occurred in Guangzhou on Oct. 16, 2014, with fever, shivering and sweating. The patient was initially diagnosed as malaria and hospitalized on Oct. 26, 2014. Microscopic observation revealed typical forms of P. knowlesi in blood smear. The red blood cells became enlarged, with big trophozoites appearing as a ring with dual cores and dark brown malaria pigment. The trophozoites were slightly bigger and thicker than P. falciparum. The schizont had 6-8 merozoites, with obvious brown malaria pigment. PCR resulted in a specific band of 1 099 bp. BLAST analysis showed that the sequence of the PCR product was 99% homologous to P. knowlesi (acession No. AM910985.1, L07560.1 and AY580317.1). The patient was diagnosed as P. knowlesi infection, and was then given an 8-day treatment with chloroquine and primaquine, together with dihydroartemisinin piperaquine phosphate tablet. The patient was discharged after recovery on Oct. 28, 2014.

    Conclusion: According to the clinical symptoms, epidemiological history and laboratory test, the patient has been confirmed as P. knowlesi infection. It may also be the first active case of knowlesi malaria reported in China.

    Matched MeSH terms: Hemeproteins
  3. Ibraheem ZO, Majid RA, Sidek HM, Noor SM, Yam MF, Abd Rachman Isnadi MF, et al.
    PMID: 31915453 DOI: 10.1155/2019/7967980
    The emergence of drug-resistant strains of Plasmodium falciparum is the worst catastrophe that has ever confronted the dedicated efforts to eradicate malaria. This urged for searching other alternatives or sensitizers that reverse chloroquine resistance. In this experiment, the potential of andrographolide to inhibit plasmodial growth and reverse CQ resistance was tested in vitro using the SYBRE green-1-based drug sensitivity assay and isobologram technique, respectively. Its safety level toward mammalian cells was screened as well against Vero cells and RBCs using MTT-based drug sensitivity and RBC hemolysis assays, respectively. Its effect against hemozoin formation was screened using β-hematin formation and heme fractionation assays. Its molecular characters were determined using the conventional tests for the antioxidant effect measurement and the in silico molecular characterization using the online free chemi-informatic Molinspiration software. Results showed that andrographolide has a moderate antiplasmodium effect that does not entitle it to be a substituent for chloroquine. Furthermore, andrographolide ameliorated the sensitivity of the parasite to chloroquine. Besides, it showed an indirect inhibitory effect against hemozoin formation within the parasite and augmented the chloroquine-induced inhibition of hemozoin formation. The study suggests that its chloroquine resistance reversal effect may be due to inhibition of chloroquine accumulation or due to its impact on the biological activity of the parasite. Overall, this in vitro study is a clue for the reliability of andrographolide to be added with chloroquine for reversal of chloroquine resistance and tolerance, but further in vivo studies are recommended to confirm this notion. In spite of its prominent and safe in vitro and in vivo growth inhibitory effect and its in vitro chloroquine resistance reversing effect, it is inapplicable to implement it in malaria chemotherapy to substitute chloroquine or to reverse its resistance.
    Matched MeSH terms: Hemeproteins
  4. Grau GE, Mackenzie CD, Carr RA, Redard M, Pizzolato G, Allasia C, et al.
    J Infect Dis, 2003 Feb 1;187(3):461-6.
    PMID: 12552430
    The pathogenesis of fatal cerebral malaria (CM) is not well understood, in part because data from patients in whom a clinical diagnosis was established prior to death are rare. In a murine CM model, platelets accumulate in brain microvasculature, and antiplatelet therapy can improve outcome. We determined whether platelets are also found in cerebral vessels in human CM, and we performed immunohistopathology for platelet-specific glycoprotein, GPIIb-IIIa, on tissue from multiple brain sites in Malawian children whose fatal illness was severe malarial anemia, CM, or nonmalarial encephalopathy. Platelets were observed in 3 locations within microvessels: between malaria pigment and leukocytes, associated with malaria pigment, or alone. The mean surface area of platelet staining and the proportion of vessels showing platelet accumulation were significantly higher in patients with CM than in those without it. Platelet accumulation occurs in the microvasculature of patients with CM and may play a role in the pathogenesis of the disease.
    Matched MeSH terms: Hemeproteins/analysis
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links