METHODS: Five databases were searched from 1990-2016 for studies that took place in countries with a GDP per capita of $7,000 to $13,000 USD. The data extraction was performed based on information regarding prevalence, sample size, age of participants, duration of intravenous drug use (IDU), recruitment location, dates of data collection, study design, sampling scheme, type of tests used in identifying antibody reactivity to HCV, and the use of confirmatory tests. The synthesis was performed with a random effects model. The Cochrane statistical Q-test was used to evaluate the statistical heterogeneity of the results.
RESULTS: The 33 studies included in the analysis correspond to a sample of seven countries and 23,342 observations. The point prevalence value estimates and confidence intervals of the random effects model were 0.729 and 0.644-0.800, respectively for all seven countries, and were greatest for China (0.633; 0.522-0.732) as compared to Brazil (0.396; 0.249-0.564). Prevalence for Montenegro (0.416; 0.237-0.621) and Malaysia (0.475; 0.177-0.792) appear to be intermediate. Mexico (0.960) and Mauritania (0.973) had only one study with the largest prevalence. A clear association was not observed between age or duration of IDU and prevalence of HCV, but the data from some groups may indicate a possible relationship. The measures of heterogeneity (Q and I2) suggest a high level of heterogeneity in studies conducted at the country level and by groups of countries.
CONCLUSIONS: In this systematic review and meta-analysis, we found that the pooled prevalence of HCV was high (0.729) among a group of seven upper middle income countries. However, there was significant variation in the prevalence of HCV observed in China (0.633) and Brazil (0.396).
METHODS: A total of 17 samples collected from December 2009 to January 2011 were analyzed. Reverse transcriptase polymerase chain reaction (PCR) was performed, followed by sequencing technique. Results were analyzed based on sequence information in GenBank. A second genotyping method (AmpliSens(®) HCV-1/2/3-FRT) was done, which differentiates HCV genotypes by means of real-time hybridization-fluorescence detection.
RESULTS: From 17 samples, four were untypeable by AmpliSens(®) HCV-1/2/3-FRT. Eleven of 13 (84.6%) results showed concordant genotypes. A specimen that was determined as genotype 3a by sequencing was genotype 1 by the AmpliSens(®) HCV-1/2/3-FRT. Another specimen that was genotype 1 by sequencing was identified as genotype 3 by AmpliSens(®) HCV-1/2/3-FRT.
CONCLUSION: HCV genotyping with AmpliSens(®) HCV-1/2/3-FRT using real-time PCR method provides a much simpler and more feasible workflow with shorter time compared to sequencing method. There was good concordance compared to sequencing method. However, more evaluation studies would be required to show statistical significance, and to troubleshoot discordant results. AmpliSens(®) HCV-1/2/3-FRT does differentiate between genotype but not until subtype level.