Displaying all 4 publications

Abstract:
Sort:
  1. Choi SB, Lew LC, Hor KC, Liong MT
    Appl Biochem Biotechnol, 2014 May;173(1):129-42.
    PMID: 24648139 DOI: 10.1007/s12010-014-0822-5
    This study aimed at optimizing the production of hyaluronic acid by Lactobacillus acidophilus FTDC 1231 using response surface methodology and evaluating the effects of divalent metal ions along the production pathway using molecular docking. Among different divalent metal ions that were screened, only iron (II) sulphate and copper (II) sulphate significantly (P acid. Subsequent optimization yielded hyaluronic acid at concentration of 0.6152 mg/mL in the presence of 1.24 mol L(-1) iron (II) sulphate and 0.16 mol L(-1) of copper (II) sulphate (103 % increase compared to absence of divalent metal ions). Data from molecular docking showed Fe(2+) improved the binding affinity of UDP-pyrophophorylase towards glucose-1-phosphate, while Cu(2+) contributed towards the interaction between UDP-glucose dehydrogenase and UDP-glucose. We have demonstrated that lactobacilli could produce hyaluronic acid at increased concentration upon facilitation by specific divalent metal ions, via specific targets of enzymes and substrates along pentose phosphate pathway.
    Matched MeSH terms: Hyaluronic Acid/biosynthesis*
  2. Lai ZW, Rahim RA, Ariff AB, Mohamad R
    J Biosci Bioeng, 2012 Sep;114(3):286-91.
    PMID: 22608992 DOI: 10.1016/j.jbiosc.2012.04.011
    The potential use of n-dodecane and n-hexadecane as oxygen vectors for enhancing hyaluronic acid (HA) biosynthesis by Streptococcus zooepidemicus ATCC 39920 was investigated using a 2-L stirred-tank bioreactor equipped with helical ribbon or Rushton turbine impellers. The volumetric fraction of the oxygen vector influenced the gas-liquid volumetric oxygen transfer coefficient (K(L)a) positively. Batch HA fermentation with 1% (v/v) n-dodecane or 0.5% (v/v) n-hexadecane addition was carried out at different impeller tip speeds. Even though cell growth was lower in the fermentation with oxygen vector addition, the HA productivity and molecular weight were higher when compared to the fermentation without oxygen vector at low impeller tip speed. The highest HA concentration (4.25 gHA/l) and molecular weight (1.54 × 10(7) Da) were obtained when 0.5% (v/v) n-hexadecane and 0.785 m/s impeller tip speed of helical ribbon were used.
    Matched MeSH terms: Hyaluronic Acid/biosynthesis*
  3. Lew LC, Liong MT, Gan CY
    J Appl Microbiol, 2013 Feb;114(2):526-35.
    PMID: 23082775 DOI: 10.1111/jam.12044
    AIMS: The study aimed to optimize the growth and evaluate the production of putative dermal bioactives from Lactobacillus rhamnosus FTDC 8313 using response surface methodology, in the presence of divalent metal ions, namely manganese and magnesium.
    METHODS AND RESULTS: A central composite design matrix (alpha value of ± 1.414) was generated with two independent factors, namely manganese sulphate (MnSO(4) ) and magnesium sulphate (MgSO(4) ). The second-order regression model indicated that the quadratic model was significant (P < 0.01), suggesting that the model accurately represented the data in the experimental region. Three-dimensional response surfaces predicted an optimum point with maximum growth of 10.59 log(10) CFU ml(-1) . The combination that produced the optimum point was 0.80 mg ml(-1) MnSO(4) and 1.09 mg ml(-1) MgSO(4) . A validation experiment was performed, and data obtained showed a deviation of 0.30% from the predicted value, ascertaining the predictions and the reliability of the regression model used. Effects of divalent metal ions on the production of putative dermal bioactives, namely hyaluronic acid, diacetyl, peptidoglycan, lipoteichoic acid and organic acids in the region of optimized growth, were evaluated using 3D response surfaces generated. Evaluation based on the individual and interaction effects showed that both manganese and magnesium played an important role in the production of these putative bioactives.
    CONCLUSIONS: Optimum growth of Lact. rhamnosus FTDC 8313 in reconstituted skimmed milk was achieved at 10.59 log(10) CFU ml(-1) in the presence of MnSO(4) (0.80 mg ml(-1) ) and MgSO(4) (1.09 mg ml(-1) ). Production of putative dermal bioactive and inhibitory compounds including hyaluronic acid, diacetyl, peptidoglycan, lipoteichoic acid and organic acids at the regions of optimized growth showed potential dermal applications.
    SIGNIFICANT AND IMPACT OF THE STUDY: This research can serve as a fundamental study to further evaluate the potential of Lactobacillus strains in non-gut-related roles such as dermal applications.
    Matched MeSH terms: Hyaluronic Acid/biosynthesis
  4. Mashitah MD, Masitah H, Ramachandran KB
    Med J Malaysia, 2004 May;59 Suppl B:59-60.
    PMID: 15468818
    Streptococcus zooepidemicus (SZ) is an aerotolerant bacteria and its ability to survive under reactive oxidant challenge raises the question of the existence of a defense system. Thus growth, hyaluronic acid (HA) and hydrogen peroxide (H2O2) production by SZ in the presence of increasing concentration of Mn2+ were studied. The results suggested that the tested strain supported growth and HA production in cultures treated with 1 and 10 mM of Mn2+ regardless of H2O2 presence in the medium. This showed that SZ have acquired elaborate defense mechanisms to scavenge oxygen toxicity and thus protect cells from direct and indirect effect of this radical. In contrast, cells treated with 25 mM Mn2+ were sensitive, in which, the HA production was reduced considerably. Thus showing that the oxygen scavenger systems of the cells may be fully saturated at this concentration.
    Matched MeSH terms: Hyaluronic Acid/biosynthesis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links