Displaying publications 1 - 20 of 147 in total

Abstract:
Sort:
  1. Sohni S, Hassan T, Khan SB, Akhtar K, Bakhsh EM, Hashim R, et al.
    Int J Biol Macromol, 2023 Jan 15;225:1426-1436.
    PMID: 36436599 DOI: 10.1016/j.ijbiomac.2022.11.200
    In this work, facile fabrication of lignin nanoparticles (LNP)-based three-dimensional reduced graphene oxide hydrogel (rGO@LNP) has been demonstrated as a novel strategy for environmental applications. Herein, LNP were facilely synthesized from walnut shell waste through a direct chemical route. These LNP were incorporated into the continuous porous network of rGO network to fabricate rGO@LNP hydrogel. Characterization studies were carried out using various analytical techniques viz. scanning electron microscopy, Fourier transform IR spectroscopy, X-ray diffraction and thermogravimetric analysis. The efficiency of rGO@LNP hydrogel as adsorptive platform was evaluated by employing methylene blue and Pb2+ as model pollutants, whilst the effect of various experimental parameters was ascertained for optimal performance. Furthermore, Agar well diffusion method was used to check the antibacterial activities of the hydrogel using two bacterial pathogenic strains, i.e. Klebsiella pneumoniae (gram negative) and Enterococcus faecalis (gram positive). Results showed that after the inclusion of LNP into rGO hydrogel, there was a marked improvement in pollutant's uptake ability and compared to bare LNP and rGO, the composite hydrogel showed enhanced bactericidal effect. Overall, this approach is outstanding because of the synergy of functional properties of nano-lignin and rGO due to multi-interaction sites in the resulting hydrogel. The results presented herein support the application of rGO@LNP as innovative water filter material for scavenging broad spectrum pollutants and bactericidal properties.
    Matched MeSH terms: Hydrogels/pharmacology
  2. Sivadasan D, Venkatesan K, Mohamed JMM, Alqahtani S, Asiri YI, Faisal MM, et al.
    Sci Rep, 2024 Mar 16;14(1):6361.
    PMID: 38493177 DOI: 10.1038/s41598-024-55953-2
    Loratadine (LoR) is a highly lipophilic and practically insoluble in water, hence having a low oral bioavailability. As it is formulated as topical gel, it competitively binds with the receptors, thus reducing the side-effects. The objective of this study was to prepare LoR loaded nanosponge (LoR-NS) in gel for topical delivery. Nine different formulations of emulsion were prepared by solvent evaporation method with polyvinyl alcohol (PVA), ethyl cellulose (EC), and dichloromethane (DCM). Based on 32 Full Factorial Design (FFD), optimization was carried out by varying the concentration of LOR:EC ratio and stirring rate. The preparations were subjected for the evaluation of particle size (PS), in vitro release, zeta potential (ZP) and entrapment efficiency (EE). The results revealed that the NS dispersion was nanosized with sustained release profiles and significant PS. The optimised formulation was formulated and incorporated into carbopol 934P hydrogel. The formulation was then examined to surface morphological characterizations using scanning electron microscopy (SEM) which depicted spherical NS. Stability studies, undertaken for 2 months at 40 ± 2 °C/75 ± 5% RH, concluded to the stability of the formulation. The formulation did not cause skin irritation. Therefore, the prepared NS hydrogel proved to be a promising applicant for LoR as a novel drug delivery system (NDDS) for safe, sustained and controlled topical application.
    Matched MeSH terms: Hydrogels*
  3. Pourshahrestani S, Zeimaran E, Kadri NA, Mutlu N, Boccaccini AR
    Adv Healthc Mater, 2020 10;9(20):e2000905.
    PMID: 32940025 DOI: 10.1002/adhm.202000905
    Broad interest in developing new hemostatic technologies arises from unmet needs in mitigating uncontrolled hemorrhage in emergency, surgical, and battlefield settings. Although a variety of hemostats, sealants, and adhesives are available, development of ideal hemostatic compositions that offer a range of remarkable properties including capability to effectively and immediately manage bleeding, excellent mechanical properties, biocompatibility, biodegradability, antibacterial effect, and strong tissue adhesion properties, under wet and dynamic conditions, still remains a challenge. Benefiting from tunable mechanical properties, high porosity, biocompatibility, injectability and ease of handling, polymeric hydrogels with outstanding hemostatic properties have been receiving increasing attention over the past several years. In this review, after shedding light on hemostasis and wound healing processes, the most recent progresses in hydrogel systems engineered from natural and synthetic polymers for hemostatic applications are discussed based on a comprehensive literature review. Most studies described used in vivo models with accessible and compressible wounds to assess the hemostatic performance of hydrogels. The challenges that need to be tackled to accelerate the translation of these novel hemostatic hydrogel systems to clinical practice are emphasized and future directions for research in the field are presented.
    Matched MeSH terms: Hydrogels*
  4. Bokhari N, Ali A, Yasmeen A, Khalid H, Safi SZ, Sharif F
    Int J Biol Macromol, 2023 Dec 31;253(Pt 6):127284.
    PMID: 37806415 DOI: 10.1016/j.ijbiomac.2023.127284
    Soft tissue defects like hernia and post-surgical fistula formation can be resolved with modern biomaterials in the form of meshes without post-operative complications. In the present study hand knitted silk meshes were surface coated with regenerated silk fibroin hydrogel and pure natural extracts. Two phytochemicals (Licorice extract (LE) and Bearberry extract (BE)) and the two honeybee products (royal jelly (RJ) and honey (HE)) were incorporated separately to induce antibacterial, anti-inflammatory, and wound healing ability to the silk hydrogel coated knitted silk meshes. Meshes were dip coated with a blend of 4 % silk hydrogel (w/v) and 5 % extracts. Dried modified meshes were characterized using SEM, DMA, GC-MS and FTIR. Antimicrobial testing, in-vitro cytotoxicity, in-vitro wound healing and Q-RT-PCR were also performed. SEM analysis concluded that presence of coating reduced the pore size up to 47.7 % whereas, fiber diameter was increased up to 17.9 % as compared to the control. The presence of coating on the mesh improved the mechanical strength/Young's modulus by 1602.8 %, UTS by 451.7 % and reduced the % strain by 51.12 %. Sustained release of extracts from MHRJ (62.9 % up to 72 h) confirmed that it can induce antibacterial activity against surgical infections. Cytocompatibility testing and gene expression results suggest that out of four variables MHRJ presented best cell viability, % wound closure and expression of wound healing marker genes. In-vivo analyses in rat hernia model were carried out using only MHRJ variant, which also confirmed the non- toxic nature and wound healing characteristics of the modified mesh. The improved cell proliferation and activated wound healing in vitro and in vivo suggested that MHRJ could be a valuable candidate to promote cell infiltration and activate soft tissue and hernia repair as a biomedical implant.
    Matched MeSH terms: Hydrogels/chemistry
  5. Hamidon TS, Idris NN, Adnan R, Haafiz MKM, Zahari A, Hussin MH
    Int J Biol Macromol, 2024 Mar;262(Pt 2):130239.
    PMID: 38367788 DOI: 10.1016/j.ijbiomac.2024.130239
    Herein, cellulose nanocrystals were synthesized from oil palm fronds (CNC-OPF) involving two pretreatment approaches, viz. autohydrolysis and soda pulping. The pretreatments were applied individually to OPF fibers to assess their influence on CNCs' physicochemical and thermal properties. CNC-OPF samples were assessed using complementary characterization techniques, which confirmed their purity and characteristics. CP/MAS 13C NMR and TEM studies revealed that autohydrolysis pretreatment yielded CNCs with effective hemicellulose and extractives removal compared to that of soda pulping. XRD analysis demonstrated that autohydrolysis-treated CNC-OPF contained a much higher crystallinity index compared to soda pulping treatment. BET measurement disclosed a relatively higher surface area and wider pore diameter of autohydrolysis-treated CNC-OPF. Autohydrolysis-treated CNCs were applied as a reinforcement filler in alginate-based hydrogel beads for the removal of 4-chlorophenol from water, which attained a qmax of 19.168 mg g-1. BET analysis revealed the less porous nature of CNC-ALG hydrogel beads which could have contributed to hydrogel beads' relatively lower adsorption capacity. The point of zero charge of CNC-ALG hydrogel beads was 4.82, suggesting their applicability only within a short solution pH range. This study directs future studies to unveil the possibilities of functionalizing CNCs in order to enhance the adsorption performance of CNC-immobilized hydrogel beads towards 4-chlorophenol and other organic contaminants.
    Matched MeSH terms: Hydrogels/chemistry
  6. Tiong ACY, Tan IS, Foo HCY, Lam MK, Mahmud HB, Lee KT
    J Colloid Interface Sci, 2022 Feb;607(Pt 2):1131-1141.
    PMID: 34571300 DOI: 10.1016/j.jcis.2021.09.042
    The synthesis of Janus nanosheets using κ-carrageenan (κ-Ca) as a green template endows a greener and more straightforward method compared to traditional approaches of using wax template. We hypothesize that the hydrogen bonding interaction between κ-Ca and graphene oxide (GO) allows partial masking of GO's single facet, paving the way for the asymmetric modification of the exposed surface. GO is first encapsulated within the porous hydrogel matrix formed by κ-Ca to isolate one of the facets. The exposed surface was then selectively hydrophobized to produce an amphiphilic asymmetrically modified graphene oxide (AMGO). The properties of AMGO synthesized under different κ-Ca/GO ratios were studied. The κ-Ca/GO interactions and the properties of GO and AMGO were investigated and characterized. AMGO was successfully produced with a yield of 90.37 % under optimized synthesis conditions. The separation of κ-Ca and AMGO was conducted without organic solvents, and the κ-Ca could be subsequently recovered. Furthermore, the porous hydrogel matrix formed by κ-Ca and GO exhibited excellent shape-retaining properties with high thermal tolerance of up to 50 °C. Given these benefits, this newly developed method endows sustainability and open the possibility of formulating more flexible material synthesis protocols.
    Matched MeSH terms: Hydrogels
  7. Kumar M, Kumar D, Garg Y, Mahmood S, Chopra S, Bhatia A
    Int J Biol Macromol, 2023 Dec 31;253(Pt 6):127331.
    PMID: 37820901 DOI: 10.1016/j.ijbiomac.2023.127331
    Polysaccharides originating from marine sources have been studied as potential material for use in wound dressings because of their desirable characteristics of biocompatibility, biodegradability, and low toxicity. Marine-derived polysaccharides used as wound dressing, provide several benefits such as promoting wound healing by providing a moist environment that facilitates cell migration and proliferation. They can also act as a barrier against external contaminants and provide a protective layer to prevent further damage to the wound. Research studies have shown that marine-derived polysaccharides can be used to develop different types of wound dressings such as hydrogels, films, and fibres. These dressings can be personalised to meet specific requirements based on the type and severity of the wound. For instance, hydrogels can be used for deep wounds to provide a moist environment, while films can be used for superficial wounds to provide a protective barrier. Additionally, these polysaccharides can be modified to improve their properties, such as enhancing their mechanical strength or increasing their ability to release bioactive molecules that can promote wound healing. Overall, marine-derived polysaccharides show great promise for developing effective and safe wound dressings for various wound types.
    Matched MeSH terms: Hydrogels
  8. Amiri M, Khazaeli P, Salehabadi A, Salavati-Niasari M
    Adv Colloid Interface Sci, 2021 Feb;288:102316.
    PMID: 33387892 DOI: 10.1016/j.cis.2020.102316
    The present article evaluates the composition and synthesis of hydrogel beads. Hydrogels, owing to their known biocompatibility, are widely used in drug delivery as a host (or drug carrier). Hydrogels, owing to their physical, chemical and biological properties, are popular in many aspects. Hydrogels are crosslinked-hydrophilic polymers and commercialized/synthesized in both natural and synthetic forms. These polymers are compatible with human tissues, therefore can be potentially used for biomedical treatments. Hydrogels in drug delivery offer several points of interest such as sustainability, and sensitivity without any side-effects as compared to traditional methods in this field. Drugs can encapsulate and release continuously into the targets when hydrogels are activated/modified magnetically or by fluorescent materials. It is crucial to develop new crosslinked polymers in terms of "biocompatibility" and "biodegradability" for novel drug delivery platforms. In the event that the accomplishments of the past can be used into the longer terms, it is exceedingly likely that hydrogels with a wide cluster of alluring properties can be synthesized. The current review, offers an updated summary of latest developments in the nanomedicines field as well as nanobased drug delivery systems over broad study of the discovery/ application of nanomaterials in improving both the efficacy of drugs and targeted delivery of them. The challenges/opportunities of nanomedicine in drug delivery also discussed. SCOPE OF THE RESEARCH: Although several reviews have been published in the field of hydrogels, however many of them have just centralized on the general overviews in terms of "synthesis" and "properties". The utilization of hydrogels and hydrogel-based composites in vital applications have been achieved a great interest. In this review, our aim is to recap of the key points in the field of hydrogels such as; a) hydrogel nanocomposites, b) magnetic beads, c) biomedical applications, and d) drug delivery. In the same vein, these outlines will be expanded with emphasizing on the boon of magnetic beads and recent developments in this area.
    Matched MeSH terms: Hydrogels*
  9. Ansar R, Saqib S, Mukhtar A, Niazi MBK, Shahid M, Jahan Z, et al.
    Chemosphere, 2022 Jan;287(Pt 1):131956.
    PMID: 34523459 DOI: 10.1016/j.chemosphere.2021.131956
    Hydrogel is the most emblematic soft material which possesses significantly tunable and programmable characteristics. Polymer hydrogels possess significant advantages including, biocompatible, simple, reliable and low cost. Therefore, research on the development of hydrogel for biomedical applications has been grown intensely. However, hydrogel development is challenging and required significant effort before the application at an industrial scale. Therefore, the current work focused on evaluating recent trends and issues with hydrogel development for biomedical applications. In addition, the hydrogel's development methodology, physicochemical properties, and biomedical applications are evaluated and benchmarked against the reported literature. Later, biomedical applications of the nano-cellulose-based hydrogel are considered and critically discussed. Based on a detailed review, it has been found that the surface energy, intermolecular interactions, and interactions of hydrogel adhesion forces are major challenges that contribute to the development of hydrogel. In addition, compared to other hydrogels, nanocellulose hydrogels demonstrated higher potential for drug delivery, 3D cell culture, diagnostics, tissue engineering, tissue therapies and gene therapies. Overall, nanocellulose hydrogel has the potential for commercialization for different biomedical applications.
    Matched MeSH terms: Hydrogels*
  10. Bakar AJA, Azam NSM, Sevakumaran V, Ismail WIW, Razali MH, Razak SIA, et al.
    Int J Biol Macromol, 2023 Aug 01;245:125494.
    PMID: 37348586 DOI: 10.1016/j.ijbiomac.2023.125494
    The demand for advanced wound care products is rapidly increasing nowadays. In this study, gellan gum/collagen (GG/C) hydrogel films containing gatifloxacin (GAT) were developed to investigate their properties as wound dressing materials. ATR-FTIR, swelling, water content, water vapor transmission rate (WVTR), and thermal properties were investigated. The mechanical properties of the materials were tested in dry and wet conditions to understand the performance of the materials after exposure to wound exudate. Drug release by Franz diffusion was measured with all samples showing 100 % cumulative drug release after 40 min. Strong antibacterial activities against Staphylococcus aureus and Staphylococcus epidermis were observed for Gram-positive bacteria, while Escherichia coli and Pseudomonas aeruginosa were observed for Gram-negative bacteria. The in-vivo cytotoxicity of GG/C-GAT was assessed by wound contraction in rats, which was 95 % for GG/C-GAT01. Hematoxylin and eosin and Masson's trichrome staining revealed the appearance of fresh full epidermis and granulation tissue, indicating that all wounds had passed through the proliferation phase. The results demonstrate the promising properties of the materials to be used as dressing materials.
    Matched MeSH terms: Hydrogels/pharmacology
  11. Nyoo Putro J, Soetaredjo FE, Santoso SP, Irawaty W, Yuliana M, Wijaya CJ, et al.
    Int J Biol Macromol, 2024 Feb;257(Pt 1):128502.
    PMID: 38040139 DOI: 10.1016/j.ijbiomac.2023.128502
    As a natural raw material to replace synthetic chemicals, cellulose and its derivatives are the most popular choices in the pharmaceutical industry. For drug delivery applications, cellulose is usually used as a cellulose nanocrystal (CNC). CNC-based hydrogels are widely utilized for drug delivery because drug molecules can be encapsulated in their pore-like structures. This study aims to develop CNC hydrogels for the delivery of doripenem antibiotics. CNC was obtained from jackfruit peel extraction, and alginate was used as a network polymer to produce hydrogels. Ionotropic gelation was used in the synthesis of CNC-alginate hydrogel composites. The maximum adsorption of doripenem by CNC was 65.7 mg/g, while the maximum adsorption by CNC-alginate was 98.4 mg/g. One of the most challenging aspects of drug delivery is predicting drug release from a solid matrix using simple and complex mathematical equations. The sigmoidal equation could represent the doripenem release from CNC, while the Ritger-Peppas equation could describe the doripenem release from CNC-Alginate. The biocompatibility testing of CNC and CNC-alginate against a 7F2 cell line indicates that both materials were non-toxic.
    Matched MeSH terms: Hydrogels/chemistry
  12. Sepantafar M, Maheronnaghsh R, Mohammadi H, Radmanesh F, Hasani-Sadrabadi MM, Ebrahimi M, et al.
    Trends Biotechnol, 2017 11;35(11):1074-1087.
    PMID: 28734545 DOI: 10.1016/j.tibtech.2017.06.015
    Over the last decade, numerous investigations have attempted to clarify the intricacies of tumor development to propose effective approaches for cancer treatment. Thanks to the unique properties of hydrogels, researchers have made significant progress in tumor model reconstruction, tumor diagnosis, and associated therapies. Notably, hydrogel-based systems can be adjusted to respond to cancer-specific hallmarks and/or external stimuli. These well-known drug reservoirs can be used as smart carriers for multiple cargos, including both naked and nanoparticle-encapsulated chemotherapeutics, genes, and radioisotopes. Recent works have attempted to specialize hydrogels for cancer research; we comprehensively review this topic for the first time, synthesizing past results and defining paths for future work.
    Matched MeSH terms: Hydrogels/therapeutic use*; Hydrogels/chemistry
  13. Parveen N, Sheikh A, Molugulu N, Annadurai S, Wahab S, Kesharwani P
    Environ Res, 2023 Nov 01;236(Pt 2):116850.
    PMID: 37558118 DOI: 10.1016/j.envres.2023.116850
    Atopic dermatitis is one of the most widespread chronic inflammatory skin conditions that can occur at any age, though the prevalence is highest in children. The purpose of the current study was to prepare and optimize the azelaic acid (AzA) loaded SNEDDS using Pseudo ternary phase diagram, which was subsequently incorporated into the Carbopol 940 hydrogel for the treatment of atopic dermatitis. The composition was evaluated for size, entrapment efficiency, in vitro, ex vivo, and in vivo studies. The polydispersity index of the optimized preparation was found to be less than 0.5, and the size of the distributed globules was found to be 151.20 ± 3.67 nm. The SNEDDS hydrogel was characterized for pH, viscosity, spreadability, and texture analysis. When compared to the marketed formulation, SNEDDS hydrogel was found to have a higher rate of permeation through the rat skin. In addition, a skin irritation test carried out on experimental animals showed that the SNEDDS formulation did not exhibit any erythematous symptoms after a 24-h exposure. In conclusion, the topical delivery of AzA through the skin using SNEDDS hydrogel could prove to be an effective approach for the treatment of atopic dermatitis.
    Matched MeSH terms: Hydrogels/pharmacology; Hydrogels/therapeutic use
  14. Halib N, Ahmad I, Grassi M, Grassi G
    Int J Pharm, 2019 Jul 20;566:631-640.
    PMID: 31195074 DOI: 10.1016/j.ijpharm.2019.06.017
    Cellulose is a natural homopolymer, composed of β-1,4- anhydro-d-glucopyranose units. Unlike plant cellulose, bacterial cellulose (BC), obtained from species belonging to the genera of Acetobacter, Rhizobium, Agrobacterium, and Sarcina through various cultivation methods and techniques, is produced in its pure form. BC is produced in the form of gel-like, never dry sheet with tremendous mechanical properties. Containing up to 99% of water, BC hydrogel is considered biocompatible thus finding robust applications in the health industry. Moreover, BC three-dimensional structure closely resembles the extracellular matrix (ECM) of living tissue. In this review, we focus on the porous BC morphology particularly suited to host oxygen and nutrients thus providing conducive environment for cell growth and proliferation. The remarkable BC porous morphology makes this biological material a promising templet for the generation of 3D tissue culture and possibly for tissue-engineered scaffolds.
    Matched MeSH terms: Hydrogels*
  15. Rehman S, Ranjha NM, Shoukat H, Madni A, Ahmad F, Raza MR, et al.
    AAPS PharmSciTech, 2021 Jul 26;22(6):209.
    PMID: 34312763 DOI: 10.1208/s12249-021-02082-y
    The aim of present research aims to fabricate a system of enteric coating of hydrogel beads with pH-sensitive polymer, which shows solubility at pH > 7, and explore their potential to target the colon for drug delivery. Hydrogel beads were fabricated through the extrusion-dripping technique followed by ion gelation crosslinking. Moreover, freeze-thaw cycle was implemented for crosslinking of polyvinyl alcohol (PVA)/Ca-alginate blend beads. The oil-in-oil solvent evaporation method was adopted for the Eudragit coating of hydrogel beads using different coat: core ratios (4:1 or 8:1). Coated and uncoated hydrogel beads were evaluated by in vitro physicochemical properties, swelling and drug release behaviours, and in vivo pharmacokinetics, swelling, and toxicity evaluation. Diclofenac sodium was loaded as an experimental drug. Drug entrapment efficiency for the PVA/Ca-alginate beads was calculated as 98%, and for Ca-alginate beads, it came out to a maximum of 74%. Drug release study at various pH suggested that, unlike uncoated hydrogel beads, the coated beads delay the release of diclofenac sodium in low pH of the gastric and intestinal environment, thus targeting the colon for the drug release. It was concluded that Eudragit S-100-coated hydrogel beads could serve as a more promising and reliable way to target the colon for drug delivery.Graphical abstract.
    Matched MeSH terms: Hydrogels*
  16. Chandran R, Mohd Tohit ER, Stanslas J, Salim N, Tuan Mahmood TM
    Tissue Eng Part C Methods, 2022 10;28(10):545-556.
    PMID: 35485888 DOI: 10.1089/ten.TEC.2022.0045
    Caffeine is therapeutically effective for treating apnea, cellulite formation, and pain management. It also exhibits neuroprotective and antioxidant activities in different models of Parkinson's disease and Alzheimer's disease. However, caffeine administration in a minimally invasive and sustainable manner through the transdermal route is challenging owing to its hydrophilic nature. Therefore, this study demonstrated a transdermal delivery approach for caffeine by utilizing hydrogel microneedle (MN) as a permeation enhancer. The influence of formulation parameters such as molecular weight (MW) of PMVE/MA (polymethyl vinyl ether/maleic anhydride) copolymer and sodium bicarbonate (NaHCO3) concentration on the swelling kinetics and mechanical integrity of the hydrogel MNs was investigated. In addition, the effect of different MN application methods and needle densities of hydrogel MN on the skin insertion efficiency and penetration depth was also evaluated. The swelling degree at equilibrium percentage (% Seq) recorded for hydrogels fabricated with Gantrez S-97 (MW = 1,500,000 Da) was significantly higher than formulation with Gantrez AN-139 (MW = 1,080,000 Da). Increasing the concentration of NaHCO3 also significantly increased the % Seq. Moreover, a 100% penetration was recorded for both the applicator and combination of applicator and thumb pressure compared with only 11% for thumb pressure alone. The average diameter of micropores created by the applicator method was 62.94 μm, which was significantly lower than the combination of both applicator and thumb pressure MN application (100.53 μm). Based on histological imaging, the penetration depth of hydrogel MN increased as the MN density per array decreased. The hydrogel MN with the optimized formulation and skin insertion parameters was tested for caffeine delivery in an in vitro Franz diffusion cell setup. Approximately 2.9 mg of caffeine was delivered within 24 h, and the drug release profile was best fitted to the Korsmeyer-Peppas model, displaying Super Case II kinetics. In conclusion, a combination of thumb and impact application methods and reduced needle density improved the skin penetration efficiency of hydrogel MNs. The results also show that hydrogel MNs fabricated from 3% w/w NaHCO3 and high MW of copolymer exhibit optimum physical and swelling properties for enhanced transdermal delivery.
    Matched MeSH terms: Hydrogels*
  17. Chen D, Xia X, Wong TW, Bai H, Behl M, Zhao Q, et al.
    Macromol Rapid Commun, 2017 Apr;38(7).
    PMID: 28196300 DOI: 10.1002/marc.201600746
    Device applications of shape memory polymers demand diverse shape changing geometries, which are currently limited to non-omnidirectional movement. This restriction originates from traditional thermomechanical programming methods such as uniaxial, biaxial stretching, bending, or compression. A solvent-modulated programming method is reported to achieve an omnidirectional shape memory behavior. The method utilizes freeze drying of hydrogels of polyethylene glycol networks with a melting transition temperature around 50 °C in their dry state. Such a process creates temporarily fixed macroporosity, which collapses upon heating, leading to significant omnidirectional shrinkage. These shrunken materials can swell in water to form hydrogels again and the omnidirectional programming and recovery can be repeated. The fixity ratio (R f ) and recovery ratio (R r ) can be maintained at 90% and 98% respectively upon shape memory multicycling. The maximum linear recoverable strain, as limited by the maximum swelling, is ≈90%. Amongst various application potentials, one can envision the fabrication of multiphase composites by taking advantages of the omnidirectional shrinkage from a porous polymer to a denser structure.
    Matched MeSH terms: Hydrogels/chemistry*
  18. Mehrali M, Thakur A, Pennisi CP, Talebian S, Arpanaei A, Nikkhah M, et al.
    Adv Mater, 2017 Feb;29(8).
    PMID: 27966826 DOI: 10.1002/adma.201603612
    Given their highly porous nature and excellent water retention, hydrogel-based biomaterials can mimic critical properties of the native cellular environment. However, their potential to emulate the electromechanical milieu of native tissues or conform well with the curved topology of human organs needs to be further explored to address a broad range of physiological demands of the body. In this regard, the incorporation of nanomaterials within hydrogels has shown great promise, as a simple one-step approach, to generate multifunctional scaffolds with previously unattainable biological, mechanical, and electrical properties. Here, recent advances in the fabrication and application of nanocomposite hydrogels in tissue engineering applications are described, with specific attention toward skeletal and electroactive tissues, such as cardiac, nerve, bone, cartilage, and skeletal muscle. Additionally, some potential uses of nanoreinforced hydrogels within the emerging disciplines of cyborganics, bionics, and soft biorobotics are highlighted.
    Matched MeSH terms: Hydrogels/chemistry*
  19. Rehman S, Madni A, Jameel QA, Usman F, Raza MR, Ahmad F, et al.
    AAPS PharmSciTech, 2022 Nov 17;23(8):304.
    PMID: 36396831 DOI: 10.1208/s12249-022-02456-w
    The current study sought to create graphene oxide-based superstructures for gastrointestinal drug delivery. Graphene oxide has a large surface area that can be used to load anti-cancer drugs via non-covalent methods such as surface adsorption and hydrogen bonding. To enhance the bio-applicability of graphene oxide, nano-hybrids were synthesized by encapsulating the graphene oxide into calcium alginate hydrogel beads through the dripping-extrusion technique. These newly developed bio-nanocomposite hybrid hydrogel beads were evaluated in structural analysis, swelling study, drug release parameters, haemolytic assay, and antibacterial activity. Doxorubicin served as a model drug. The drug entrapment efficiency was determined by UV-spectroscopy analysis and was found to be high at ⁓89% in graphene oxide hybrid hydrogel beads. These fabricated hydrogel beads ensure the drug release from a hybrid polymeric matrix in a more controlled and sustained pattern avoiding the problems associated with a non-hybrid polymeric system. The drug release study of 12 h shows about 83% release at pH 6.8. In vitro drug release kinetics proved that drug release was a Fickian mechanism. The cytotoxic effect of graphene oxide hybrid alginate beads was also determined by evaluating the morphology of bacterial cells and red blood cells after incubation. Additionally, it was determined that the sequential encapsulation of graphene oxide in alginate hydrogel beads hides its uneven edges and lessens the graphene oxide's negative impacts. Also, the antibacterial study and biocompatibility of fabricated hydrogel beads made them potential candidates for gastrointestinal delivery.
    Matched MeSH terms: Hydrogels/chemistry
  20. Mah SH, Sundrasegaran S, Lau HLN
    J Oleo Sci, 2024;73(4):489-502.
    PMID: 38556283 DOI: 10.5650/jos.ess23197
    Skincare industries are growing rapidly around the globe but most products are formulated using synthetic chemicals and organic solvent extracted plant extracts, thus may be hazardous to the users and incur higher cost for purification that eventually leads to phytonutrient degradation. Therefore, this study aimed to formulate a stable natural formulation with antioxidant and antimicrobial activities by using supercritical carbon dioxide (SC-CO 2 ) extracted palm-pressed fiber oil (PPFO) as an active ingredient with virgin coconut oil (VCO) as a formulation base. PPFO was extracted from fresh palm-pressed fiber (PPF) while VCO was from dried grated coconut copra using SC-CO 2 before being subjected to the analyses of physicochemical properties, phytonutrient content and biological activities including antioxidant and antimicrobial. The nanoemulgel formulations were then developed and examined for their stability through accelerated stability study for 3 months by measuring their pH, particle size, polydispersity index and zeta potential. The results showed that PPFO contained a high amount of phytonutrients, especially total carotenoid (1497 ppm) and total tocopherol and tocotrienol (2269 ppm) contents. The newly developed nanoemulgels maintained their particles in nano size and showed good stability with high negative zeta potentials. Sample nanoemulgel formulated with 3% PPFO diluted in VCO as effective concentration showed significantly stronger antioxidant activity than the control which was formulated from 3% tocopheryl acetate diluted in mineral oil, towards DPPH and ABTS radicals, with IC 50 values of 67.41 and 44.28 µL/mL, respectively. For the antibacterial activities, the sample nanoemulgel was found to inhibit Gram positive bacteria S. aureus and S. epidermidis growth but not the Gram negative strain E. coli. Overall, this study revealed the potential of SF-extracted PPFO as an active ingredient in the antioxidant topical formulations thus future study on in vitro skin cell models is highly recommended for validation.
    Matched MeSH terms: Hydrogels*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links