Displaying all 5 publications

Abstract:
Sort:
  1. Zainal-Abidin MH, Hayyan M, Hayyan A, Jayakumar NS
    Anal Chim Acta, 2017 08 01;979:1-23.
    PMID: 28599704 DOI: 10.1016/j.aca.2017.05.012
    With the rapid development of ionic liquid analogues, termed 'deep eutectic solvents' (DESs), and their application in a wide range of chemical and biochemical processes in the past decade, the extraction of bioactive compounds has attracted significant interest. Recently, numerous studies have explored the extraction of bioactive compounds using DESs from diverse groups of natural sources, including animal and plant sources. This review summarizes the-state-of-the-art effort dedicated to the application of DESs in the extraction of bioactive compounds. The aim of this review also was to introduce conventional and recently-developed extraction techniques, with emphasis on the use of DESs as potential extractants for various bioactive compounds, such as phenolic acid, flavonoids, tanshinone, keratin, tocols, terpenoids, carrageenans, xanthones, isoflavones, α-mangostin, genistin, apigenin, and others. In the near future, DESs are expected to be used extensively for the extraction of bioactive compounds from various sources.
    Matched MeSH terms: Hydroxybenzoates/isolation & purification
  2. Sukor NF, Jusoh R, Kamarudin NS, Abdul Halim NA, Sulaiman AZ, Abdullah SB
    Ultrason Sonochem, 2020 Apr;62:104876.
    PMID: 31796331 DOI: 10.1016/j.ultsonch.2019.104876
    Phenolic acids of oak gall were extracted using ultrasonic-probe assisted extraction (UPAE) method in the presence of ionic liquid. It was compared with classical ultrasonic-bath assisted extraction (CUBAE) and conventional aqueous extraction (CAE) method, with and without the presence of ionic liquid. Remarkably, the UPAE method yielded two-fold higher extraction yield with the presence of ionic liquid, resulting 481.04 mg/g for gallic acids (GA) and 2287.90 mg/g for tannic acids (TA), while a decreased value of 130.36 mg/g for GA and 1556.26 mg/g for TA were resulted with the absence of ionic liquid. Intensification process resulted the highest yield of 497.34 mg/g and 2430.48 mg/g for GA and TA, respectively, extracted at temperature 50 °C with sonication intensity of 8.66 W/cm2 and 10% duty cycle, diluted in ionic liquid, 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [Bmim][Tf2N] at concentration of 0.10 M with sample-to-solvent ratio 1:10 for 8 h. Peleg's model successfully predicted the UPAE process confirming that extraction capacity is the controlling factor in extracting phenolic acids. Hence, it can be concluded that UPAE method and ionic liquid have synergistic effect as it effectively enhanced the extraction efficiency to increase the bioactive constituents yield.
    Matched MeSH terms: Hydroxybenzoates/isolation & purification*
  3. Moniruzzaman M, Yung An C, Rao PV, Hawlader MN, Azlan SA, Sulaiman SA, et al.
    Biomed Res Int, 2014;2014:737490.
    PMID: 25045696 DOI: 10.1155/2014/737490
    The aim of the present study was to characterize the phenolic acids, flavonoids, and antioxidant properties of monofloral honey collected from five different districts in Bangladesh. A new high performance liquid chromatography (HPLC) equipped with a UV detector method was developed for the identification of the phenolic acids and flavonoids. A total of five different phenolic acids were identified, with the most abundant being caffeic acid, benzoic acid, gallic acid, followed by chlorogenic acid and trans-cinnamic acid. The flavonoids, kaempferol, and catechin were most abundant, followed by myricetin and naringenin. The mean moisture content, total sugar content, and color characteristics of the honey samples were 18.36 ± 0.95%, 67.40 ± 5.63 g/100 g, and 129.27 ± 34.66 mm Pfund, respectively. The mean total phenolic acids, total flavonoid content, and proline content were 199.20 ± 135.23, 46.73 ± 34.16, and 556.40 ± 376.86 mg/kg, respectively, while the mean FRAP values and DPPH radical scavenging activity were 327.30 ± 231.87 μM Fe (II)/100 g and 36.95 ± 20.53%, respectively. Among the different types of honey, kalijira exhibited the highest phenolics and antioxidant properties. Overall, our study confirms that all the investigated honey samples are good sources of phenolic acids and flavonoids with good antioxidant properties.
    Matched MeSH terms: Hydroxybenzoates/isolation & purification*
  4. Shalash M, Makahleh A, Salhimi SM, Saad B
    Talanta, 2017 Nov 01;174:428-435.
    PMID: 28738603 DOI: 10.1016/j.talanta.2017.06.039
    A vortex-assisted liquid-liquid-liquid microextraction method followed by high performance liquid chromatography-diode array detection for the determination of fourteen phenolic acids (cinnamic, m-coumaric, chlorogenic, syringic, ferulic, o-coumaric, p-coumaric, vanillic, p-hydroxybenzoic, caffeic, 2, 4-dihydroxybenzoic, sinapic, gentisic and gallic acids) in honey, iced tea and canned coffee drink samples has been developed. The separation was achieved using a Poroshell 120-EC-C18 column under a gradient elution at a flow rate of 0.6mLmin-1 and mobile phase composed of methanol and acetic acid (1%, v/v). Under the optimum chromatographic conditions, the fourteen phenolic acids were separated in less than 32min. The extraction was performed using a small volume (400µL) of ternary organic solvents (1-pentanol, propyl acetate and 1-hexanol) dispersed into the aqueous sample (10mL) and assisted by vortex agitation (2500rpm for 45s), the analytes were next back-extracted from the organic solvent using 0.02M KOH (40µL) with vortex speed and time of 2500rpm and 60s, respectively. Under these conditions, enrichment factors of 30-193-fold were achieved. The limits of detection (LODs) were 0.05-0.68µgL-1. Recoveries in honey, iced tea and canned coffee drinks were in the range 72.2-112%. The method was successfully applied for the determination of the phenolic acids in honey, iced tea and canned coffee drinks.
    Matched MeSH terms: Hydroxybenzoates/isolation & purification*
  5. Musa M, Wan Ibrahim WA, Mohd Marsin F, Abdul Keyon AS, Rashidi Nodeh H
    Food Chem, 2018 Nov 01;265:165-172.
    PMID: 29884368 DOI: 10.1016/j.foodchem.2018.04.020
    Graphene-magnetite composite (G-Fe3O4) was successfully synthesized and applied as adsorbent for magnetic solid phase extraction (MSPE) of two phenolic acids namely 4-hydroxybenzoic acid (4-HB) and 3,4-dihydroxybenzoic acid (3,4-DHB) from stingless bee honey prior to analysis using high performance liquid chromatography with ultraviolet-visible detection (HPLC-UV/Vis). Several MSPE parameters affecting extraction of these two acids were optimized. Optimum MSPE conditions were 50 mg of G-Fe3O4 adsorbent, 5 min extraction time at 1600 rpm, 30 mL sample volume, sample solution pH 0.5, 200 µL methanol as desorption solvent (5 min sonication assisted) and 5% w/v NaCl. The LODs (3 S/N) calculated for 4-HB and 3,4-DHB were 0.08 and 0.14 µg/g, respectively. Good relative recoveries (72.6-110.6%) and reproducibility values (RSD 
    Matched MeSH terms: Hydroxybenzoates/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links