Displaying all 8 publications

Abstract:
Sort:
  1. Ben-Hander GM, Makahleh A, Saad B, Saleh MI
    PMID: 24200841 DOI: 10.1016/j.jchromb.2013.10.007
    A three phase hollow fiber liquid-phase microextraction with in situ derivatization (in situ HF-LPME) followed by high-performance liquid chromatography-ultraviolet detection (HPLC-UV) method was developed for the trace determination of metformin hydrochloride (MH) in biological fluids. A new derivatization agent pentafluorobenzoyl chloride (PFBC) was used. Several parameters that affect the derivatization and extraction efficiency were studied and optimized (i.e., type of organic solvent, volume of NaOH (4M) and derivatization agent in the donor phase, acceptor phase (HCl) concentration, stirring speed, temperature, time and salt addition). Under the optimum conditions (organic solvent, dihexyl ether; volume of NaOH (4M) and derivatization agent (10mg PFBC in 1mL acetonitrile) in the donor phase, 600 and100μL, respectively; acceptor phase, 100mM HCl (10μL); stirring speed, 300rpm; extraction time, 30min; derivatization temperature, 70°C; without addition of salt) an enrichment factor of 210-fold was achieved. Good linearity was observed over the range of 1-1000ngmL(-1) (r(2)=0.9998). The limits of detection and quantitation were 0.56 and 1.68ngmL(-1), respectively. The proposed method has been applied for the determination of MH in biological fluids (plasma and urine) and water samples. Prior to the microextraction treatment of plasma samples, deproteinization step using acetonitrile was conducted. The proposed method is simple, rapid, sensitive and suitable for the determination of MH in a variety of samples.
    Matched MeSH terms: Hypoglycemic Agents/analysis*
  2. Sarmadi B, Aminuddin F, Hamid M, Saari N, Abdul-Hamid A, Ismail A
    Food Chem, 2012 Sep 15;134(2):905-11.
    PMID: 23107706 DOI: 10.1016/j.foodchem.2012.02.202
    Fat, alkaloid and polyphenol contents of two clones of cocoa (UIT1 and PBC 140) were removed and the remaining powder was autolyzed at pH 3.5 and 5.2. Based on the results, autolysates of UIT produced at pH 3.5 exhibited the highest ability to inhibit α-amylase activity. However, no α-glucosidase inhibition activity was observed under the conditions specified. Autolysates produced under pH 3.5 caused the highest amount of insulin secretion. In streptozotocin-diabetic rats, all cocoa autolysates significantly decreased blood glucose at 4h. To assure that the results from the assays were not due to the polyphenols of cocoa autolysates qualitative and quantitative tests were applied. According to their results cocoa autolysates were found to be free from polyphenols. Analysis of amino acid composition revealed that cocoa autolysates were abundant in hydrophobic amino acids. It can be suggested that besides other compounds of cocoa, its peptides and amino acids could contribute to its health benefits.
    Matched MeSH terms: Hypoglycemic Agents/analysis
  3. Al Azzam KM, Makahleah A, Saad B, Mansor SM
    J Chromatogr A, 2010 Jun 4;1217(23):3654-9.
    PMID: 20409552 DOI: 10.1016/j.chroma.2010.03.055
    A three-phase hollow fiber liquid-phase microextraction (HF-LPME) coupled either with capillary electrophoresis (CE) or high performance liquid chromatography (HPLC) with UV detection methods was successfully developed for the determination of trace levels of the anti-diabetic drug, rosiglitazone (ROSI) in biological fluids. The analyte was extracted into dihexyl ether that was immobilized in the wall pores of a porous hollow fiber from 10 mL of aqueous sample, pH 9.5 (donor phase), and was back extracted into the acceptor phase that contained 0.1M HCl located in the lumen of the hollow fiber. Parameters affecting the extraction process such as type of extraction solvent, HCl concentration, donor phase pH, extraction time, stirring speed, and salt addition were studied and optimized. Under the optimized conditions (extraction solvent, dihexyl ether; donor phase pH, 9.5; acceptor phase, 0.1M HCl; stirring speed, 600 rpm; extraction time, 30 min; without addition of salt), enrichment factor of 280 was obtained. Good linearity and correlation coefficients of the analyte was obtained over the concentration ranges of 1.0-500 and 5.0-500 ng mL(-1) for the HPLC (r(2)=0.9988) and CE (r(2)=0.9967) methods, respectively. The limits of detection (LOD) and limits of quantitation (LOQ) for the HPLC and CE methods were (0.18, 2.83) and (0.56, 5.00) ng mL(-1), respectively. The percent relative standard deviation (n=6) for the extraction and determination of three concentration levels (10, 250, 500 ng mL(-1)) of ROSI using the HPLC and CE methods were less than 10.9% and 13.2%, respectively. The developed methods are simple, rapid, sensitive and are suitable for the determination of trace amounts of ROSI in biological fluids.
    Matched MeSH terms: Hypoglycemic Agents/analysis*
  4. Choo CY, Sulong NY, Man F, Wong TW
    J Ethnopharmacol, 2012 Aug 1;142(3):776-81.
    PMID: 22683902 DOI: 10.1016/j.jep.2012.05.062
    The leaves of Ficus deltoidea are used as a traditional medicine by diabetes patients in Malaysia.
    Matched MeSH terms: Hypoglycemic Agents/analysis
  5. Al-Zuaidy MH, Hamid AA, Ismail A, Mohamed S, Abdul Razis AF, Mumtaz MW, et al.
    J Food Sci, 2016 May;81(5):C1080-90.
    PMID: 27074520 DOI: 10.1111/1750-3841.13293
    Diabetes mellitus is normally characterized by chronic hyperglycemia associated with disturbances in the fat, carbohydrate, and protein metabolism. There is an increasing trend of using natural products instead of synthetic agents as alternative therapy for disorders due to their fewer side effects. In this study, antidiabetic and antioxidant activities of different Melicope lunu-ankenda (ML) ethanolic extracts were evaluated using inhibition of α-glucosidase and 2,2-diphenyl-l-picrylhydrazyl (DPPH) radicals scavenging activity, respectively; whereas, proton nuclear magnetic resonance ((1) H NMR) and ultra-high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) techniques were used for metabolite profiling of ML leaf extracts at different concentrations of ethanol and water. Sixty percent of ethanolic ML extract showed highest inhibitory effect against α-glucosidase enzyme (IC50 of 37 μg/mL) and DPPH scavenging activity (IC50 of 48 μg/mL). Antidiabetic effect of ML extracts was also evaluated in vivo and it was found that the high doses (400 mg/Kg BW) of ML extract exhibited high suppression in fasting blood glucose level by 62.75%. The metabolites responsible for variation among ML samples with variable ethanolic levels have been evaluated successfully using (1) H-NMR-based metabolomics. The principal component analysis (PCA) and partial least squares(PLS) analysis scores depicted clear and distinct separations into 4 clusters representing the 4 ethanolic concentrations by PC1 and PC2, with an eigenvalue of 69.9%. Various (1) H-NMR chemical shifts related to the metabolites responsible for sample difference were also ascribed. The main bioactive compounds identified attributing toward the separation included: isorhamnetin, skimmianine, scopoletin, and melicarpinone. Hence, ML may be used as promising medicinal plant for the development of new functional foods, new generation antidiabetic drugs, as a single entity phytomedicine or in combinational therapy.
    Matched MeSH terms: Hypoglycemic Agents/analysis
  6. Lim SY, Tham PY, Lim HYL, Heng WS, Chang YP
    J Food Sci, 2018 Jun;83(6):1522-1532.
    PMID: 29745989 DOI: 10.1111/1750-3841.14155
    The valorization of guava waste requires compositional and functional studies. We tested three byproducts of guava purée processing, namely refiner, siever, and decanter. We analyzed the chemical composition and quantified the prebiotic activity score and selected carbohydrates; we also determined the water holding (WHC), oil holding (OHC), cation exchange capacities, bile acid binding, and glucose dialysis retardation (GDR) of the solid fraction and the antioxidative and α-amylase inhibitory capacities (AIC) of the ethanolic extract. Refiner contained 7.7% lipid, 7.08% protein and a relatively high phytate content; it had a high prebiotic activity score and possessed the highest binding capacity with deoxycholic acid. Siever contained high levels of low molecular weight carbohydrates and total tannin but relatively low crude fiber and cellulose contents. It had the highest binding with chenodeoxycholic acid (74.8%), and exhibited the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity. Decanter was rich in cellulose and had a high prebiotic activity score. The WHC and OHC values of decanter were within a narrow range and also exhibited the highest binding with cholic acid (86.6%), and the highest values of GDR and AIC. The refiner waste could be included in animal feed but requires further processing to reduce the high phytate levels. All three guava byproducts had the potential to be a source of antioxidant dietary fiber (DF), a finding that warrants further in vivo study.

    PRACTICAL APPLICATION: To differing extents, the guava byproducts exhibited useful physicochemical binding properties and so possessed the potential for health-promoting activity. These byproducts could also be upgraded to other marketable products so the manufacturers of processed guava might be able to develop their businesses sustainably by making better use of them.

    Matched MeSH terms: Hypoglycemic Agents/analysis
  7. Agatonovic-Kustrin S, Morton DW, Adam A, Mizaton HH, Zakaria H
    J Chromatogr A, 2017 Dec 29;1530:192-196.
    PMID: 29132827 DOI: 10.1016/j.chroma.2017.11.012
    The steady increase of diabetes is becoming a major burden on health care systems. As diabetic complications arise from oxidative stress, an antioxidant therapy along with anti-diabetic drugs is recommended. Myrmecodia or ant plant is highly valued as a traditional medicine in West Papua. It is used as an alternative treatment for diabetes, as the substances produced by ants can reduce blood sugar levels. The aim of this study was to develop and establish high-performance thin-layer chromatographic (HPTLC)-bioautographic methods to measure the antioxidant and hypoglycemic effects in different extracts from Myrmecodia platytyrea and to compare them with sterol content. Antioxidant activity in methanol, ethanol, dichloromethane (DCM) and ethyl acetate (EA) extracts were measured with a direct HPTLC-2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay, while hypoglycemic effects were assessed using a newly developed α-amylase inhibitory activity assay. Stigmasterol is observed, after derivatization with anisaldehyde, as purple colored zones under visible light at hRF values of 0.66. The highest antioxidant activity was observed in the ethanol extract which is rich in polyphenols and flavonoids, while the DCM extract did not show antioxidant activity, but had significant α-amylase inhibitory activity. The highest α-amylase inhibitory activity was observed in the EA and DCM extracts and was related to their stigmasterol content.
    Matched MeSH terms: Hypoglycemic Agents/analysis*
  8. Agatonovic-Kustrin S, Morton DW
    J Chromatogr A, 2017 Dec 29;1530:197-203.
    PMID: 29157606 DOI: 10.1016/j.chroma.2017.11.024
    High-Performance Thin-layer chromatography (HPTLC) combined with DPPH free radical method and α-amylase bioassay was used to compare antioxidant and antidiabetic activities in ethanol and ethyl acetate extracts from 10 marine macroalgae species (3 Chlorophyta, 4 Phaeophyta and 3 Rhodophyta) from Blue Lagoon beach (Malaysia). Samples were also evaluated for their phenolic and stigmasterol content. On average, higher antioxidant activity was observed in the ethyl acetate extracts (55.1mg/100g gallic acid equivalents (GAE) compared to 35.0mg/100g GAE) while, as expected, phenolic content was higher in ethanol extracts (330.5mg/100g GAE compared to 289.5mg/100g GAE). Amounts of fucoxanthin, stigmasterol and α-amylase inhibitory activities were higher in ethyl acetate extracts. Higher enzyme inhibition is therefore related to higher concentrations of triterpenes and phytosterols (Note: these compounds are more soluble in ethyl acetate). Ethyl acetate extracts from Caulerpa racemosa and Padina minor, had the highest α-amylase inhibitory activity, and also showed moderately high antioxidant activities, stigmasterol content and polyphenolic content. Caulerpa racemose, being green algae, does not contain fucoxanthin, while Padina minor, being brown algae, contains high amounts of fucoxanthin. Therefore, it is very unlikely that fucoxanthin contributes to α-amylase inhibitory activity as previously reported.
    Matched MeSH terms: Hypoglycemic Agents/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links