Displaying publications 1 - 20 of 55 in total

Abstract:
Sort:
  1. Rami AZA, Hamid AA, Anuar NNM, Aminuddin A, Ugusman A
    Mediators Inflamm, 2022;2022:2734321.
    PMID: 35177953 DOI: 10.1155/2022/2734321
    Initially thought to only provide mechanical support for the underlying blood vessels, perivascular adipose tissue (PVAT) has now emerged as a regulator of vascular function. A healthy PVAT exerts anticontractile and anti-inflammatory actions on the underlying vasculature via the release of adipocytokines such as adiponectin, nitric oxide, and omentin. However, dysfunctional PVAT produces more proinflammatory adipocytokines such as leptin, resistin, interleukin- (IL-) 6, IL-1β, and tumor necrosis factor-alpha, thus inducing an inflammatory response that contributes to the pathogenesis of vascular diseases. In this review, current knowledge on the role of PVAT inflammation in the development of vascular pathologies such as atherosclerosis and hypertension was discussed.
    Matched MeSH terms: Inflammation/pathology
  2. Muthuraju S, Zakaria R, Karuppan MKM, Al-Rahbi B
    Biomed Res Int, 2020 03 05;2020:9231452.
    PMID: 32219147 DOI: 10.1155/2020/9231452
    Matched MeSH terms: Inflammation/pathology
  3. Vellasamy DM, Lee SJ, Goh KW, Goh BH, Tang YQ, Ming LC, et al.
    Int J Mol Sci, 2022 Oct 27;23(21).
    PMID: 36361845 DOI: 10.3390/ijms232113059
    Atherosclerosis is one of the main underlying causes of cardiovascular diseases (CVD). It is associated with chronic inflammation and intimal thickening as well as the involvement of multiple cell types including immune cells. The engagement of innate or adaptive immune response has either athero-protective or atherogenic properties in exacerbating or alleviating atherosclerosis. In atherosclerosis, the mechanism of action of immune cells, particularly monocytes, macrophages, dendritic cells, and B- and T-lymphocytes have been discussed. Immuno-senescence is associated with aging, viral infections, genetic predispositions, and hyperlipidemia, which contribute to atherosclerosis. Immune senescent cells secrete SASP that delays or accelerates atherosclerosis plaque growth and associated pathologies such as aneurysms and coronary artery disease. Senescent cells undergo cell cycle arrest, morphological changes, and phenotypic changes in terms of their abundances and secretome profile including cytokines, chemokines, matrix metalloproteases (MMPs) and Toll-like receptors (TLRs) expressions. The senescence markers are used in therapeutics and currently, senolytics represent one of the emerging treatments where specific targets and clearance of senescent cells are being considered as therapy targets for the prevention or treatment of atherosclerosis.
    Matched MeSH terms: Inflammation/pathology
  4. Paudel YN, Angelopoulou E, Piperi C, Balasubramaniam VRMT, Othman I, Shaikh MF
    Eur J Pharmacol, 2019 Sep 05;858:172487.
    PMID: 31229535 DOI: 10.1016/j.ejphar.2019.172487
    High mobility group box 1 (HMGB1) is a ubiquitous protein, released passively by necrotic tissues or secreted actively by stressed cells. Extracellular HMGB1 is a typical damage-associated molecular pattern (DAMP) molecule which generates different redox types through binding with several receptors and signalling molecules, aggravating a range of cellular responses, including inflammation. HMGB1 is reported to participate in the pathogenesis of inflammatory diseases, through the interaction with pivotal transmembrane receptors, including the receptor for advanced glycation end products (RAGE) and toll-like receptor-4 (TLR-4). This review aims to highlight the role of HMGB1 in the innate inflammatory response describing its interaction with several cofactors and receptors that coordinate its downstream effects. Novel and underexplored HMGB1 binding molecules that have been actively involved in HMGB1-mediated inflammatory diseases/conditions with therapeutic potential are further discussed.
    Matched MeSH terms: Inflammation/pathology
  5. Seriramulu VP, Suppiah S, Lee HH, Jang JH, Omar NF, Mohan SN, et al.
    Med J Malaysia, 2024 Jan;79(1):102-110.
    PMID: 38287765
    INTRODUCTION: Magnetic resonance spectroscopy (MRS) has an emerging role as a neuroimaging tool for the detection of biomarkers of Alzheimer's disease (AD). To date, MRS has been established as one of the diagnostic tools for various diseases such as breast cancer and fatty liver, as well as brain tumours. However, its utility in neurodegenerative diseases is still in the experimental stages. The potential role of the modality has not been fully explored, as there is diverse information regarding the aberrations in the brain metabolites caused by normal ageing versus neurodegenerative disorders.

    MATERIALS AND METHODS: A literature search was carried out to gather eligible studies from the following widely sourced electronic databases such as Scopus, PubMed and Google Scholar using the combination of the following keywords: AD, MRS, brain metabolites, deep learning (DL), machine learning (ML) and artificial intelligence (AI); having the aim of taking the readers through the advancements in the usage of MRS analysis and related AI applications for the detection of AD.

    RESULTS: We elaborate on the MRS data acquisition, processing, analysis, and interpretation techniques. Recommendation is made for MRS parameters that can obtain the best quality spectrum for fingerprinting the brain metabolomics composition in AD. Furthermore, we summarise ML and DL techniques that have been utilised to estimate the uncertainty in the machine-predicted metabolite content, as well as streamline the process of displaying results of metabolites derangement that occurs as part of ageing.

    CONCLUSION: MRS has a role as a non-invasive tool for the detection of brain metabolite biomarkers that indicate brain metabolic health, which can be integral in the management of AD.

    Matched MeSH terms: Inflammation/pathology
  6. Leong CF, Soo PY, Fadilah SAW, Cheong SK
    Med J Malaysia, 2003 Mar;58(1):131-4.
    PMID: 14556340
    A 49 year-old Indian housewife was diagnosed with Hodgkin's disease in 1995. She was given combination chemotherapy comprising Chlorambucil, Vincristine, Procarbazine and Prednisolone. Unfortunately she defaulted after two courses of chemotherapy. One year later, she developed progressive right knee swelling and pain, associated with loss of appetite, loss of weight, intermittent fever, night sweats and pruritus. The right knee swelling measured 15 cm x 20 cm and was warm and tender. A plain radiograph of the right knee revealed osteolytic lesions at the distal end of the right femur and the proximal ends of the right tibia and fibula, associated with gross periosteal reaction and soft tissue swelling. Apart from left cervical lymphoadenopathy, examination of other systems was unremarkable. Pelvic bone marrow biopsy was inconclusive. An open biopsy of the lower end of the right femur was consistent with Hodgkin's disease. She was given salvage combination therapy comprising Chlorambucil, Vincristine, Procarbazine, Prednisolone, Doxorubicin, Bleomycin and Vinblastine. She tolerated the treatment well and responded with significant reduction in the swelling and pain of the right knee. Unfortunately, she again defaulted treatment after 2 courses of chemotherapy. This case illustrates an unusual presentation of Hodgkin's disease in relapse.
    Matched MeSH terms: Inflammation/pathology
  7. Meon R
    Oral Surg. Oral Med. Oral Pathol., 1989 Jun;67(6):740-5.
    PMID: 2500632
    The dorsal skin of 18 healthy Sprague-Dawley rats was used to investigate the reaction of connective tissue to buffered and unbuffered glutaraldehyde. Both the agents produced well-circumscribed lesions that underwent resolution within 30 days. Observation also shows that 2.0% buffered and unbuffered glutaraldehyde maintained a relatively inflammation-free status in connective tissue.
    Matched MeSH terms: Inflammation/pathology
  8. Bindal P, Gnanasegaran N, Bindal U, Haque N, Ramasamy TS, Chai WL, et al.
    Clin Oral Investig, 2019 Oct;23(10):3821-3831.
    PMID: 30687907 DOI: 10.1007/s00784-019-02811-5
    OBJECTIVE: In this study, we aimed to determine the suitable concentrations of human platelet lysate (HPL) and platelet-rich plasma (PRP) for maintaining the in vitro proliferative and angiogenic potential of inflamed dental pulp stem cells.

    MATERIALS AND METHODS: Lipopolysaccharide (LPS)-induced inflamed dental pulp-derived stem cells (iDPSCs) were treated with different concentrations of HPL and PRP (10% and 20%) followed by determination of viability using Alamar Blue assay. Expression of angiogenesis-, adhesion-, and inflammation-regulating genes was also analyzed using RT-qPCR array. Furthermore, expression of growth factors at protein level in the cell culture microenvironment was measured using multiplex assay.

    RESULTS: Viability of iDPSCs was significantly (p 

    Matched MeSH terms: Inflammation/pathology*
  9. Tambuwala MM, Kesharwani P, Shukla R, Thompson PD, McCarron PA
    Pathol Res Pract, 2018 Nov;214(11):1909-1911.
    PMID: 30170869 DOI: 10.1016/j.prp.2018.08.020
    Fibrosis is known to be the hallmarks of chronic inflammation of the bowel. Epithelial damage due to inflammation compromises the barrier function of the gastrointestinal tract. This barrier dysfunction leads to further spread of inflammation resulting in a chronic state of inflammation. This chronic inflammation leads to development of fibrosis, which has very limited therapeutic options and usually requires surgical removal of the affected tissue. Our previous work has shown that Caffeic acid phenethyl ester (CAPE) is a naturally occurring anti-inflammatory agent, found in propolis, has been found to be protective in experimental colitis via enhancement of epithelial barrier function. However, the impact of CAPE on resolution of fibrosis in the long-term is unknown. The aim of this follow up study was to investigate the effect of CAPE on colon fibrosis in a chronic model of Dextran sulphate sodium induced colitis in mice. Dextran sulphate sodium (DSS) 2.5% w/v was administered in drinking water to induce colitis in C57/BL6 mice for 5 days on the 6th day DSS was stopped and test group mice were treated with intraperitoneal administration of CAPE (30 mg kg-1 day-1) for a further 7 days. Disease activity index (DAI) score, colon length and tissue histology and level of tissue fibrosis was observed. CAPE-treated mice had significantly lower levels of DAI, tissue inflammation scores and fibrosis as compared with control group. Our results show that CAPE is effective in resolving colon fibrosis in chronic inflammation. Thus, we can conclude CAPE could be a potential therapeutic agent for further clinical investigations for treatment of fibrosis in inflammatory bowel diseases in humans.
    Matched MeSH terms: Inflammation/pathology*
  10. Paudel YN, Angelopoulou E, Akyuz E, Piperi C, Othman I, Shaikh MF
    Pharmacol Res, 2020 10;160:105172.
    PMID: 32871246 DOI: 10.1016/j.phrs.2020.105172
    Understanding the interplay between the innate immune system, neuroinflammation, and epilepsy might offer a novel perspective in the quest of exploring new treatment strategies. Due to the complex pathology underlying epileptogenesis, no disease-modifying treatment is currently available that might prevent epilepsy after a plausible epileptogenic insult despite the advances in pre-clinical and clinical research. Neuroinflammation underlies the etiopathogenesis of epilepsy and convulsive disorders with Toll-like receptor (TLR) signal transduction being highly involved. Among TLR family members, TLR4 is an innate immune system receptor and lipopolysaccharide (LPS) sensor that has been reported to contribute to epileptogenesis by regulating neuronal excitability. Herein, we discuss available evidence on the role of TLR4 and its endogenous ligands, the high mobility group box 1 (HMGB1) protein, the heat shock proteins (HSPs) and the myeloid related protein 8 (MRP8), in epileptogenesis and post-traumatic epilepsy (PTE). Moreover, we provide an account of the promising findings of TLR4 modulation/inhibition in experimental animal models with therapeutic impact on seizures.
    Matched MeSH terms: Inflammation/pathology
  11. Fazalul Rahiman SS, Basir R, Talib H, Tie TH, Chuah YK, Jabbarzare M, et al.
    Trop Biomed, 2013 Dec;30(4):663-80.
    PMID: 24522137 MyJurnal
    Interleukin-27 (IL-27) has a pleiotropic role either as a pro-inflammatory or anti-inflammatory cytokine in inflammatory related diseases. The role and involvement of IL-27 during malaria was investigated and the effects of modulating its release on the production of major inflammatory cytokines and the histopathological consequences in major affected organs during the infection were evaluated. Results showed that IL-27 concentration was significantly elevated throughout the infection but no positive correlation with the parasitaemia development observed. Augmentation of IL-27 significantly elevated the release of anti-inflammatory cytokine, IL-10 whereas antagonising and neutralising IL-27 produced the opposite. A significant elevation of pro-inflammatory cytokines (IFN-γ and IL-6) was also observed, both during augmentation and inhibition of IL-27. Thus, it is suggested that IL-27 exerts an anti-inflammatory activity in the Th1 type response by signalling the production of IL-10 during malaria. Histopathological examination showed sequestration of PRBC in the microvasculature of major organs in malarial mice. Other significant histopathological changes include hyperplasia and hypertrophy of the Kupffer cells in the liver, hyaline membrane formation in lung tissue, enlargement of the white and red pulp followed by the disappearance of germinal centre of the spleen, and tubular vacuolation of the kidney tissues. In conclusion, it is suggested that IL-27 may possibly acts as an anti-inflammatory cytokine during the infection. Modulation of its release produced a positive impact on inflammatory cytokine production during the infection, suggesting its potential in malaria immunotherapy, in which the host may benefit from its inhibition.
    Matched MeSH terms: Inflammation/pathology*
  12. Shastri MD, Allam VSRR, Shukla SD, Jha NK, Paudel KR, Peterson GM, et al.
    Life Sci, 2021 Oct 15;283:119871.
    PMID: 34352260 DOI: 10.1016/j.lfs.2021.119871
    Non-communicable, chronic respiratory diseases (CRDs) affect millions of individuals worldwide. The course of these CRDs (asthma, chronic obstructive pulmonary disease, and cystic fibrosis) are often punctuated by microbial infections that may result in hospitalization and are associated with increased risk of morbidity and mortality, as well as reduced quality of life. Interleukin-13 (IL-13) is a key protein that regulates airway inflammation and mucus hypersecretion. There has been much interest in IL-13 from the last two decades. This cytokine is believed to play a decisive role in the exacerbation of inflammation during the course of viral infections, especially, in those with pre-existing CRDs. Here, we discuss the common viral infections in CRDs, as well as the potential role that IL-13 plays in the virus-induced disease pathogenesis of CRDs. We also discuss, in detail, the immune-modulation potential of IL-13 that could be translated to in-depth studies to develop IL-13-based therapeutic entities.
    Matched MeSH terms: Inflammation/pathology
  13. Lee NT, Ong LK, Gyawali P, Nassir CMNCM, Mustapha M, Nandurkar HH, et al.
    Biomolecules, 2021 07 06;11(7).
    PMID: 34356618 DOI: 10.3390/biom11070994
    The cerebral endothelium is an active interface between blood and the central nervous system. In addition to being a physical barrier between the blood and the brain, the endothelium also actively regulates metabolic homeostasis, vascular tone and permeability, coagulation, and movement of immune cells. Being part of the blood-brain barrier, endothelial cells of the brain have specialized morphology, physiology, and phenotypes due to their unique microenvironment. Known cardiovascular risk factors facilitate cerebral endothelial dysfunction, leading to impaired vasodilation, an aggravated inflammatory response, as well as increased oxidative stress and vascular proliferation. This culminates in the thrombo-inflammatory response, an underlying cause of ischemic stroke and cerebral small vessel disease (CSVD). These events are further exacerbated when blood flow is returned to the brain after a period of ischemia, a phenomenon termed ischemia-reperfusion injury. Purinergic signaling is an endogenous molecular pathway in which the enzymes CD39 and CD73 catabolize extracellular adenosine triphosphate (eATP) to adenosine. After ischemia and CSVD, eATP is released from dying neurons as a damage molecule, triggering thrombosis and inflammation. In contrast, adenosine is anti-thrombotic, protects against oxidative stress, and suppresses the immune response. Evidently, therapies that promote adenosine generation or boost CD39 activity at the site of endothelial injury have promising benefits in the context of atherothrombotic stroke and can be extended to current CSVD known pathomechanisms. Here, we have reviewed the rationale and benefits of CD39 and CD39 therapies to treat endothelial dysfunction in the brain.
    Matched MeSH terms: Inflammation/pathology
  14. Che Ahmad Tantowi NA, Lau SF, Mohamed S
    Calcif. Tissue Int., 2018 10;103(4):388-399.
    PMID: 29808374 DOI: 10.1007/s00223-018-0433-1
    Osteoporosis (OP) and osteoarthritis (OA) are debilitating musculoskeletal diseases of the elderly. Ficus deltoidea (FD) or mistletoe fig, a medicinal plant, was pre-clinically evaluated against OP- and OA-related bone alterations, in postmenopausal OA rat model. Thirty twelfth-week-old female rats were divided into groups (n = 6). Four groups were bilateral ovariectomized (OVX) and OA-induced by intra-articular monosodium iodoacetate (MIA) injection into the right knee joints. The Sham control and OVX-OA non-treated groups were given deionized water. The three other OVX-OA groups were orally administered daily with FD extract (200, 400 mg/kg) or diclofenac (5 mg/kg) for 4 weeks. The rats' bones and blood were evaluated for protein and mRNA expressions of osteoporosis and inflammatory indicators, and micro-CT computed tomography for bone microstructure. The non-treated OVX-OA rats developed severe OP bone loss and bone microstructural damage in the subchondral and metaphyseal regions, supported by reduced serum bone formation markers (osteocalcin, osteoprotegerin) and increased bone resorption markers (RANKL and CTX-I). The FD extract significantly (p 
    Matched MeSH terms: Inflammation/pathology*
  15. Chen LH, Xue JF, Zheng ZY, Shuhaidi M, Thu HE, Hussain Z
    Int J Biol Macromol, 2018 Sep;116:572-584.
    PMID: 29772338 DOI: 10.1016/j.ijbiomac.2018.05.068
    Hyaluronic acid (HA) plays multifaceted role in regulating various biological processes and maintaining homeostasis into the body. Numerous researches evidenced the biomedical implications of HA in skin repairmen, cancer prognosis, wound healing, tissue regeneration, anti-inflammatory, immunomodulation. The present review was aimed to summarize and critically appraise the recent developments and efficacy of HA for treatment of inflammatory skin and joint diseases. A thorough analysis of the literature revealed that HA based formulations (i.e., gels, creams, autologous graft, thin sheets, soaked gauze, gauze pad, tincture, injection) have shown remarkable efficacy in treating a wide range of inflammatory skin diseases. The safety, tolerability, and efficacy of HA (as intra-articular injection) have also been well-documented for treatment of various types of joint disease including knee osteoarthritic, joint osteoarthritis, canine osteoarthritis, and meniscal swelling. Intra-articular injection of HA produces remarkable reduction in joint pain, synovial inflammation, and articular swelling. A remarkable improvement in chondrocyte density, territorial matrix appearance, reconstitution of superficial amorphous layer of the cartilage, collagen remodelling, and regeneration of meniscus have also been evident in patients treated with HA. Conclusively, we validate that the application/administration of HA is a promising pharmacotherapeutic regimen for treatment of inflammatory skin and joint diseases.
    Matched MeSH terms: Inflammation/pathology
  16. Yap JKY, Pickard BS, Chan EWL, Gan SY
    Mol Neurobiol, 2019 Nov;56(11):7741-7753.
    PMID: 31111399 DOI: 10.1007/s12035-019-1638-7
    The innate immune system and inflammatory response in the brain have critical impacts on the pathogenesis of many neurodegenerative diseases including Alzheimer's disease (AD). In the central nervous system (CNS), the innate immune response is primarily mediated by microglia. However, non-glial cells such as neurons could also partake in inflammatory response independently through inflammasome signalling. The NLR family pyrin domain-containing 1 (NLRP1) inflammasome in the CNS is primarily expressed by pyramidal neurons and oligodendrocytes. NLRP1 is activated in response to amyloid-β (Aβ) aggregates, and its activation subsequently cleaves caspase-1 into its active subunits. The activated caspase-1 proteolytically processes interleukin-1β (IL-1β) and interleukin-18 (IL-18) into maturation whilst co-ordinately triggers caspase-6 which is responsible for apoptosis and axonal degeneration. In addition, caspase-1 activation induces pyroptosis, an inflammatory form of programmed cell death. Studies in murine AD models indicate that the Nlrp1 inflammasome is indeed upregulated in AD and neuronal death is observed leading to cognitive decline. However, the mechanism of NLRP1 inflammasome activation in AD is particularly elusive, given its structural and functional complexities. In this review, we examine the implications of the human NLRP1 inflammasome and its signalling pathways in driving neuroinflammation in AD.
    Matched MeSH terms: Inflammation/pathology*
  17. Sharifi-Rad J, Quispe C, Herrera-Bravo J, Belén LH, Kaur R, Kregiel D, et al.
    Oxid Med Cell Longev, 2021;2021:7571132.
    PMID: 34349875 DOI: 10.1155/2021/7571132
    The Glycyrrhiza genus, generally well-known as licorice, is broadly used for food and medicinal purposes around the globe. The genus encompasses a rich pool of bioactive molecules including triterpene saponins (e.g., glycyrrhizin) and flavonoids (e.g., liquiritigenin, liquiritin). This genus is being increasingly exploited for its biological effects such as antioxidant, antibacterial, antifungal, anti-inflammatory, antiproliferative, and cytotoxic activities. The species Glycyrrhiza glabra L. and the compound glycyrrhizin (glycyrrhizic acid) have been studied immensely for their effect on humans. The efficacy of the compound has been reported to be significantly higher on viral hepatitis and immune deficiency syndrome. This review provides up-to-date data on the most widely investigated Glycyrrhiza species for food and medicinal purposes, with special emphasis on secondary metabolites' composition and bioactive effects.
    Matched MeSH terms: Inflammation/pathology
  18. Ng CY, Kamisah Y, Faizah O, Jaarin K
    Int J Exp Pathol, 2012 Oct;93(5):377-87.
    PMID: 22974219 DOI: 10.1111/j.1365-2613.2012.00839.x
    Thermally oxidized oil generates reactive oxygen species that have been implicated in several pathological processes including hypertension. This study was to ascertain the role of inflammation in the blood pressure raising effect of heated soybean oil in rats. Male Sprague-Dawley rats were divided into four groups and were fed with the following diets, respectively, for 6 months: basal diet (control); fresh soybean oil (FSO); five-time-heated soybean oil (5HSO); or 10-time-heated soybean oil (10HSO). Blood pressure was measured at baseline and monthly using tail-cuff method. Plasma prostacyclin (PGI(2) ) and thromboxane A(2) (TXA(2) ) were measured prior to treatment and at the end of the study. After six months, the rats were sacrificed, and the aortic arches were dissected for morphometric and immunohistochemical analyses. Blood pressure was increased significantly in the 5HSO and 10HSO groups. The blood pressure was maintained throughout the study in rats fed FSO. The aortae in the 5HSO and 10HSO groups showed significantly increased aortic wall thickness, area and circumferential wall tension. 5HSO and 10HSO diets significantly increased plasma TXA(2) /PGI(2) ratio. Endothelial VCAM-1 and ICAM-1 were significantly increased in 5HSO, as well as LOX-1 in 10HSO groups. In conclusion, prolonged consumption of repeatedly heated soybean oil causes blood pressure elevation, which may be attributed to inflammation.
    Matched MeSH terms: Inflammation/pathology
  19. Kassim M, Mansor M, Suhaimi A, Ong G, Yusoff KM
    Int J Mol Sci, 2012;13(9):12113-29.
    PMID: 23109904 DOI: 10.3390/ijms130912113
    Monocytes and macrophages are part of the first-line defense against bacterial, fungal, and viral infections during host immune responses; they express high levels of proinflammatory cytokines and cytotoxic molecules, including nitric oxide, reactive oxygen species, and their reaction product peroxynitrite. Peroxynitrite is a short-lived oxidant and a potent inducer of cell death. Honey, in addition to its well-known sweetening properties, is a natural antioxidant that has been used since ancient times in traditional medicine. We examined the ability of Gelam honey, derived from the Gelam tree (Melaleuca spp.), to scavenge peroxynitrite during immune responses mounted in the murine macrophage cell line RAW 264.7 when stimulated with lipopolysaccharide/interferon-γ (LPS/IFN-γ) and in LPS-treated rats. Gelam honey significantly improved the viability of LPS/IFN-γ-treated RAW 264.7 cells and inhibited nitric oxide production-similar to the effects observed with an inhibitor of inducible nitric oxide synthase (1400W). Furthermore, honey, but not 1400W, inhibited peroxynitrite production from the synthetic substrate 3-morpholinosydnonimine (SIN-1) and prevented the peroxynitrite-mediated conversion of dihydrorhodamine 123 to its fluorescent oxidation product rhodamine 123. Honey inhibited peroxynitrite synthesis in LPS-treated rats. Thus, honey may attenuate inflammatory responses that lead to cell damage and death, suggesting its therapeutic uses for several inflammatory disorders.
    Matched MeSH terms: Inflammation/pathology
  20. Sasmita AO, Ling APK, Voon KGL, Koh RY, Wong YP
    Int J Mol Med, 2018 May;41(5):3033-3040.
    PMID: 29436598 DOI: 10.3892/ijmm.2018.3479
    Neurodegeneration is typically preceded by neuroinflammation generated by the nervous system to protect itself from tissue damage, however, excess neuroinflammation may inadvertently cause more harm to the surrounding tissues. Attenuating neuroinflammation with non‑steroidal anti‑inflammatory drugs can inhibit neurodegeneration. However, such treatments induce chronic side effects, including stomach ulcers. Madecassoside, a triterpene derived from Centella asiatica, is considered to be an alternative treatment of inflammation. In the present study, the anti‑neuroinflammatory properties of madecassoside were assessed in BV2 microglia cells, which were pre‑treated with madecassoside at a maximum non‑toxic dose (MNTD) of 9.50 µg/ml and a ½ MNTD of 4.75 µg/ml for 3 h and stimulated with 0.1 µg/ml lipopolysaccharide (LPS). The effect of madecassoside was assessed by determining reactive oxygen species (ROS) levels in all groups. Furthermore, the expression of pro‑ and anti‑neuroinflammatory genes and proteins were analyzed using reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. The results demonstrated that ROS levels in cells treated with the MNTD of madecassoside were significantly reduced compared with cells treated with LPS alone (P<0.05). The expression of pro‑neuroinflammatory genes, including inducible nitric oxide synthase, cyclooxygenase‑2, signal transducer and activator of transcription 1 and nuclear factor‑κB, were significantly downregulated in a dose‑independent manner following treatment with madecassoside. Conversely, the anti‑neuroinflammatory component heme oxygenase 1 was significantly upregulated by 175.22% in the MNTD‑treated group, compared with cells treated with LPS alone (P<0.05). The gene expression profiles of pro‑ and anti‑inflammatory genes were also consistent with the results of western blotting. The results of the present study suggest that madecassoside may be a potent anti‑neuroinflammatory agent. The antioxidative properties of madecassoside, which serve a major role in anti‑neuroinflammation, indicate that this compound may be a functional natural anti‑neuroinflammatory agent, therefore, further in vivo or molecular studies are required.
    Matched MeSH terms: Inflammation/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links