Displaying all 20 publications

Abstract:
Sort:
  1. Sharma JN
    Pharmacol. Toxicol., 1988 Nov;63(5):310-6.
    PMID: 3070519
    Matched MeSH terms: Intestinal Mucosa/metabolism*
  2. Li X, Tan CP, Liu YF, Xu YJ
    J Agric Food Chem, 2020 Dec 16;68(50):14728-14738.
    PMID: 33289375 DOI: 10.1021/acs.jafc.0c07378
    The intestine is an important digestive organ of the human body, and its barrier is the guardian of the body from the external environment. The impairment of the intestinal barrier is believed to be an important determinant in various foodborne diseases. Food hazards can lead to the occurrence of many foodborne diseases represented by inflammation. Therefore, understanding the mechanisms of the impact of the food hazards on intestinal barriers is essential for promoting human health. This review examined the relationship between food hazards and the intestinal barrier in three aspects: apoptosis, imbalance of gut microbiota, and pro-inflammatory cytokines. The mechanism of dysfunctional gut microbiota caused by food hazards was also discussed. This review discusses the interaction among food hazards, intestinal barrier, and foodborne diseases and, thus, offers a new thought to deal with foodborne disease.
    Matched MeSH terms: Intestinal Mucosa/metabolism*
  3. Ahmad Z, Rasouli M, Azman AZ, Omar AR
    BMC Biotechnol, 2012 Sep 19;12:64.
    PMID: 22989329 DOI: 10.1186/1472-6750-12-64
    BACKGROUND: Gene therapy could provide an effective treatment of diabetes. Previous studies have investigated the potential for several cell and tissue types to produce mature and active insulin. Gut K and L-cells could be potential candidate hosts for gene therapy because of their special features.

    RESULTS: In this study, we isolated gut K and L-cells to compare the potential of both cell types to produce insulin when exposed to similar conditions. The isolated pure K and L-cells were transfected with recombinant plasmids encoding insulin and with specific promoters for K or L-cells. Insulin expression was studied in response to glucose or meat hydrolysate. We found that glucose and meat hydrolysate efficiently induced insulin secretion from K and L-cells. However, the effects of meat hydrolysate on insulin secretion were more potent in both cells compared with glucose. Results of enzyme-linked immunosorbent assays showed that L-cells secreted more insulin compared with K-cells regardless of the stimulator, although this difference was not statistically significant.

    CONCLUSION: The responses of K and L-cells to stimulation with glucose or meat hydrolysate were generally comparable. Therefore, both K and L-cells show similar potential to be used as surrogate cells for insulin gene expression in vitro. The potential use of these cells for diabetic gene therapy warrants further investigation.

    Matched MeSH terms: Intestinal Mucosa/metabolism
  4. Dar MJ, Ali H, Khan A, Khan GM
    J Drug Target, 2017 Aug;25(7):582-596.
    PMID: 28277824 DOI: 10.1080/1061186X.2017.1298601
    Colon-specific drug delivery has found important applications in the wide array of diseases affecting the lower intestinal tract. Recent developments and advancements in the polymer-based colonic delivery ensure targeted therapeutics with reduced systemic adverse effects. Latest progress in the understanding of polymer science has decorated a polymer-based formulation with a number of special features, which may prove effective in the localized drug targeting at specific sites of the intestine. Upon oral administration, polymeric vehicles or polymer-coated formulations serve to protect the drug from premature release and degradation in the upper gastrointestinal tract. Moreover, it also facilitates the selective accumulation and controlled release of the drug at inflamed sites of the colon. This review article focuses on a wide coverage of major polymers, their modifications, pros and cons, mechanism of colon targeting and applications as a vehicle system for colonic drug delivery, with a special emphasis on the inflammatory bowel disease.
    Matched MeSH terms: Intestinal Mucosa/metabolism
  5. Pathmanathan SG, Lawley B, McConnell M, Baird MA, Tannock GW
    Anaerobe, 2020 Feb;61:102112.
    PMID: 31629806 DOI: 10.1016/j.anaerobe.2019.102112
    Immuno-modulatory effects of infant gut bacteria were tested on poly(I:C) stimulated HT-29 intestinal epithelial cells. Blautia producta, Bacteroides vulgatus, Bacteroides fragilis and Bacteroides thetaiotaomicron decreased transcription of poly(I:C)-induced inflammatory genes. Modulation of basal level and poly(I:C)-induced IL-8 secretion varied between bacterial species, and between heat treated and non-heat treated bacterial cells.
    Matched MeSH terms: Intestinal Mucosa/metabolism
  6. Chew MF, Teoh KH, Cheah PL
    Malays J Pathol, 2012 Jun;34(1):25-8.
    PMID: 22870594 MyJurnal
    CD133, a marker which has been advocated to mark colorectal carcinoma "stem or tumour initiating cells" is amongst the frequently studied markers in colorectal cancer. A study was conducted at the Department of Pathology, University of Malaya Medical Centre to determine the expression of CD133 in 56 archived, formalin-fixed, paraffin-embedded colorectal adenocarcinoma in comparison with adjacent benign colorectal epithelium by immunohistochemical staining for CD133 expression. CD133 immunopositivity was determined as staining at the glandular luminal surface or in the intraluminal debris. Expression was semiquantitated for (1) proportion of CD133 immunopositivity in the malignant or adjacent benign colorectal epithelium and (2) intensity of staining. The final score of CD133 immunopositivity was arbitrarily taken as proportion of CD133 immunopositivity multiplied by intensity of staining in both the malignant and adjacent benign colorectal epithelium. CD133 expression was observed in significantly increased frequency in 49 (87.5%) colorectal adenocarcinoma compared with 15 (26.8%) of the adjacent benign colorectal epithelium (p<0.05). In terms of immunopositivity score (proportion of CD133 immunopositivity multiplied by intensity of staining), colorectal adenocarcinoma had a mean arbitrary score of 8.5 which was significantly higher than the mean immunopositivity score of 0.5 of the adjacent benign colorectal epithelium (p<0.05). In addition, the maximum immunopositivity score for the adjacent benign colorectal epithelium was 4, while 38 (67.9%) of colorectal adenocarcinoma had scores >4. This study shows that CD133 is able to mark colorectal adenocarcinoma but it is still unclear at this juncture whether CD133 is indeed a marker for colorectal adenocarcinoma "stem cells".
    Matched MeSH terms: Intestinal Mucosa/metabolism
  7. Venkatesh G, Ramanathan S, Nair NK, Mansor SM, Sattar MA, Khan MA, et al.
    Biomed Chromatogr, 2007 May;21(5):484-90.
    PMID: 17294505
    A simple and sensitive RP-HPLC-UV method was developed and validated for simultaneous determination of atenolol and propranolol and subsequently applied to investigate the effect of dimethyl sulfoxide in rat in situ intestinal permeability studies. Atenolol (400 microm) and propranolol (100 microm) were perfused in the small intestine of anaesthetized (pentobarbitone sodium 60 mg/kg, i.p.) male Sprague-Dawley rats either in the presence (1, 3 and 5%) or in the absence of dimethyl sulfoxide. There was no significant alteration (p > 0.05) in the permeability of atenolol and propranolol, which indicated there was no effect of various concentrations of dimethyl sulfoxide (1-5%) on the membrane integrity of the rat intestinal tissues. The analytical method was validated on a C(4) column with a mobile phase comprising ammonium acetate buffer (pH 3.5, 0.02 m) and acetonitrile in the ratio of 30:70 (v/v) at a flow rate of 1.0 mL/min. The validated method was found to be accurate and precise and stability studies were carried out at different storage conditions and both analytes were found to be stable. These findings are applicable for determining the absorbability of water-insoluble drugs and new chemical entities for the purpose of classifying them in the biopharmaceutical classification system.
    Matched MeSH terms: Intestinal Mucosa/metabolism*
  8. Raj SM, Sein KT, Anuar AK, Mustaffa BE
    Trans R Soc Trop Med Hyg, 1996 11 1;90(6):666-9.
    PMID: 9015510
    Intestinal permeability of 246 early primary schoolchildren at 2 schools (106 of whom were infected with intestinal helminths) was assessed by using the lactulose/mannitol differential absorption test. The ratio of the urinary recoveries of lactulose and mannitol was determined after oral administration of a standard solution of the 2 sugars. Assessment of intestinal permeability was repeated on 100 infected children after treatment and on a cohort of 68 uninfected children. Infected and uninfected groups were compared with respect to baseline lactulose/mannitol ratio (L/M1) and change in lactulose/mannitol ratio between assessments (delta L/M). The correlations between baseline intensity of infection and L/M1, and between fall in intensity and delta L/M, were evaluated. Based on a crude index of socioeconomic status, each child was assigned to one of 3 socioeconomic groups; all but 3 children belonged to either groups 2 or 3. Trichuris trichiura and Ascaris lumbricoides were the 2 predominant infections; the hookworm infection rate was relatively low. The results suggested that helminthiasis exerted only a marginal effect on intestinal permeability, the impact of which in children from lower socioeconomic backgrounds was negligible in comparison with the cumulative effects of other factors.
    Matched MeSH terms: Intestinal Mucosa/metabolism*
  9. Low END, Mokhtar NM, Wong Z, Raja Ali RA
    J Crohns Colitis, 2019 May 27;13(6):755-763.
    PMID: 30954025 DOI: 10.1093/ecco-jcc/jjz002
    BACKGROUND AND AIMS: Patients with ulcerative colitis [UC] with long disease duration have a higher risk of developing colitis-associated cancer [CAC] compared with patients with short-duration UC. The aim of this study was to identify transcriptomic differences associated with the duration of UC disease.

    METHODS: We conducted transcriptome profiling on 32 colonic biopsies [11 long-duration UC, ≥20 years; and 21 short-duration UC, ≤5 years] using Affymetrix Human Transcriptome Array 2.0. Differentially expressed genes [fold change > 1.5, p < 0.05] and alternative splicing events [splicing index > 1.5, p < 0.05] were determined using the Transcriptome Analysis Console. KOBAS 3.0 and DAVID 6.8 were used for KEGG and GO analysis. Selected genes from microarray analysis were validated using qPCR.

    RESULTS: There were 640 differentially expressed genes between both groups. The top ten upregulated genes were HMGCS2, UGT2A3 isoforms, B4GALNT2, MEP1B, GUCA2B, ADH1C, OTOP2, SLC9A3, and LYPD8; the top ten downregulated genes were PI3, DUOX2, VNN1, SLC6A14, GREM1, MMP1, CXCL1, TNIP3, TFF1, and LCN2. Among the 123 altered KEGG pathways, the most significant were metabolic pathways; fatty acid degradation; valine, leucine, and isoleucine degradation; the peroxisome proliferator-activated receptor signalling pathway; and bile secretion, which were previously linked with CAC. Analysis showed that 3560 genes exhibited differential alternative splicing between long- and short-duration UC. Among them, 374 were differentially expressed, underscoring the intrinsic relationship between altered gene expression and alternative splicing.

    CONCLUSIONS: Long-duration UC patients have altered gene expressions, pathways, and alternative splicing events as compared with short-duration UC patients, and these could be further validated to improve our understanding of the pathogenesis of CAC.

    Matched MeSH terms: Intestinal Mucosa/metabolism
  10. Izuddin WI, Loh TC, Foo HL, Samsudin AA, Humam AM
    Sci Rep, 2019 Jul 09;9(1):9938.
    PMID: 31289291 DOI: 10.1038/s41598-019-46076-0
    We investigate the effects of postbiotic Lactobacillus plantarum RG14 on gastrointestinal histology, haematology, mucosal IgA concentration, microbial population and mRNA expression related to intestinal mucosal immunity and barrier function. Twelve newly weaned lambs were randomly allocated to two treatment groups; the control group without postbiotic supplementation and postbiotic group with supplementation of 0.9% postbiotic in the diet over a 60-day trial. The improvement of rumen papillae height and width were observed in lambs fed with postbiotics. In contrast, no difference was shown in villi height of duodenum, jejunum and ileum between the two groups. Lambs received postbiotics had a lower concentration of IgA in jejunum but no difference in IgA concentration in serum and mucosal of the rumen, duodenum and ileum. In respect of haematology, postbiotics lowered leukocyte, lymphocyte, basophil, neutrophil and platelets, no significant differences in eosinophil. The increase in of IL-6 mRNA and decrease of IL-1β, IL-10, TNF mRNA were observed in the jejunum of lambs receiving postbiotics. Postbiotics also improved the integrity of the intestinal barrier by the upregulation of TJP-1, CLDN-1 and CLDN-4 mRNA. Postbiotic supplementation derived from L. plantarum RG14 in post-weaning lambs enhance the ruminal papillae growth, immune status and gastrointestinal health.
    Matched MeSH terms: Intestinal Mucosa/metabolism
  11. Rasouli M, Allaudin ZN, Omar AR, Ahmad Z
    Curr Gene Ther, 2013 Aug;13(4):229-39.
    PMID: 23721205 DOI: 10.2174/15665232113139990002
    Poorly controlled diabetes mellitus can result in serious complications. Gene therapy is increasingly being considered as an alternative approach to treat diabetes, because of its ability to induce physiological insulin secretion and it allows patients to escape insulin injections. The properties of gut K and L-cells, including glucose sensitivity, the ability to process insulin and a regulated secretion pathway support their use as surrogate β-cells. Previous in vitro studies have provided sufficient evidence supporting the use of these cells for gene therapy studies. Therefore, we examined the ability of K and L-cells to produce insulin in diabetic mice. Chitosan nanoparticles were used to transfer the insulin gene into intestinal cells via oral administration. The efficiency of chitosan as a gene vehicle was investigated through the use of reporter gene. Insulin mRNA and protein expression levels were measured by RT-PCR and ELISA, respectively. Blood glucose testing revealed that this treatment reduced glucose levels in diabetic mice. The decrease in blood glucose level in the first week of treatment was greater in mice with K-cell specific insulin expression compared with mice with L-cell-specific insulin expression. These results indicate that inducing insulin secretion in K-cells conferred a quicker response to gene therapy.
    Matched MeSH terms: Intestinal Mucosa/metabolism
  12. Erejuwa OO, Sulaiman SA, Wahab MS
    Molecules, 2011 Dec 28;17(1):248-66.
    PMID: 22205091 DOI: 10.3390/molecules17010248
    Evidence shows that honey improves glycemic control in diabetes mellitus. Besides its hypoglycemic effect, studies indicate that honey ameliorates lipid abnormalities in rats and humans with diabetes. The majority of these studies do not examine the mechanisms by which honey ameliorates glycemic and/or lipid derangements. The gut microbiota is now recognized for its ability to increase energy harvest from the diet and alter lipid metabolism of the host. Recently available data implicate a causal role of these gut microbes in the pathophysiology of obesity, insulin resistance, and diabetes mellitus. In this review, we present some of the latest findings linking gut microbiota to pathogenesis of obesity, insulin resistance, and diabetes mellitus. The review also underlines data that demonstrate the beneficial effects of oligosaccharides on various abnormalities commonly associated with these disorders. Based on the similarities of some of these findings with those of honey, together with the evidence that honey contains oligosaccharides, we hypothesize that oligosaccharides present in honey might contribute to the antidiabetic and other health-related beneficial effects of honey. We anticipate that the possibility of oligosaccharides in honey contributing to the antidiabetic and other health-related effects of honey will stimulate a renewed research interest in this field.
    Matched MeSH terms: Intestinal Mucosa/metabolism
  13. Khor TO, Gul YA, Ithnin H, Seow HF
    Int J Colorectal Dis, 2006 May;21(4):291-300.
    PMID: 16041507
    BACKGROUND AND AIMS: It is well accepted that activation of Wnt signalling occurs in colorectal carcinoma (CRC), but the correlation amongst the various proteins involved in primary tumours are still unclear. The expression of the inducer of this pathway, Wnt-1, and the downstream effectors, WISP-1, cyclin-D1 and survivin proteins, was compared in a series of CRC tissues with the apparently normal adjacent tissues to determine the relationship of these proteins.

    PATIENTS AND METHODS: Formalin-fixed, paraffin-embedded tissue samples of 47 CRCs surgically resected at the Kuala Lumpur Hospital (KLH) between 1999 and 2000 were used. Immunohistochemical staining with monoclonal antibodies against cyclin-D1 and survivin and polyclonal antibodies against Wnt-1 and WISP-1 was performed. Results of immunohistochemistry were analysed for correlation between biomolecules and histopathological data of the patients.

    RESULTS: Of the 47 CRCs, 26 (55.3%), 15 (31.9%), 5 (10.6%) and 28 (59.6%) of the tumours exhibited positivity for Wnt-1, WISP-1, cyclin D1 and survivin, respectively. A lower percentage of the 40 apparently normal adjacent tissues were found to be positive for Wnt-1 (7, 17.5%), WISP-1 (+/-5, 12.5%) and survivin (13, 32.5%), but cyclin D1 was not detected in any of them. Interestingly, the total scores of Wnt-1, WISP-1 and survivin were significantly higher in CRC tissues (p=0.001, 0.034 and 0.044, respectively). Using the Spearman rank correlation test, a positive linear relationship was found between total Wnt-1 score with total WISP-1 score (rho=0.319, p=0.003) and total survivin score (rho=0.609, p=or<0.001). The expression of WISP-1 in the CRC tissues was found to be positively correlated with patients older than 60 years old (p=0.011). In addition, nuclear cyclin-D1 expression was found to be associated with poorly differentiated CRC tissues (p<0.001, Table 5) and right-sided CRC tumour (p=0.019, Table 6). Total WISP-1 score was associated with well-differentiated CRC tissues (p=0.029).

    CONCLUSIONS: Overexpression and interplay between Wnt-1, WISP-1, survivin and cyclin-D1 may play a role in tumorigenesis, possibly by promoting cell cycle checkpoint progression, accelerating cell growth and inhibiting apoptosis. Our data may provide useful information towards the search for potent therapeutic targets towards the development of novel treatment strategies for CRC.

    Matched MeSH terms: Intestinal Mucosa/metabolism
  14. Tee YN, Kumar PV, Maki MAA, Elumalai M, Rahman SAKMEH, Cheah SC
    Curr Pharm Biotechnol, 2021;22(7):969-982.
    PMID: 33342408 DOI: 10.2174/1389201021666201218124450
    BACKGROUND: Recombinant Keratinocyte Growth Factor (rHuKGF) is a therapeutic protein used widely in oral mucositis after chemotherapy in various cancers, stimulating lung morphogenesis and gastrointestinal tract cell proliferation. In this research study, chitosan-rHuKGF polymeric complex was implemented to improve the stability of rHuKGF and used as rejuvenation therapy for the treatment of oral mucositis in cancer patients.

    OBJECTIVE: Complexation of rHuKGF with mucoadhesive low molecular weight chitosan to protect rHuKGF from proteolysis and investigate the effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells.

    METHODS: The interaction between chitosan and rHuKGF was studied by molecular docking. Malvern ZetaSizer Nano Zs and Fourier-Transform Infrared spectroscopy (FTIR) tests were carried out to characterize the chitosan-rHuKGF complex. In addition, SDS-PAGE was performed to investigate the interaction between chitosan-rHuKGF complex and pepsin. The effect of chitosan-rHuKGF complex on the proliferation rate of FHs 74 Int cells was studied by MTT assay.

    RESULTS: Chitosan-rHuKGF complex was formed through the hydrogen bonding proven by the docking studies. A stable chitosan-rHuKGF complex was formed at pH 4.5 and was protected from proteolysis and assessed by SDS PAGE. According to the MTT assay results, chitosan-rHuKGF complex increased the cell proliferation rate of FHs 74 Int cells.

    CONCLUSION: The developed complex improved the stability and the biological function of rHuKGF.

    Matched MeSH terms: Intestinal Mucosa/metabolism
  15. Rasouli M, Ahmad Z, Omar AR, Allaudin ZN
    BMC Biotechnol, 2011 Nov 03;11:99.
    PMID: 22047106 DOI: 10.1186/1472-6750-11-99
    BACKGROUND: Diabetes mellitus is a complicated disease with a pathophysiology that includes hyperinsulinemia, hyperglycemia and other metabolic impairments leading to many clinical complications. It is necessary to develop appropriate treatments to manage the disease and reduce possible acute and chronic side effects. The advent of gene therapy has generated excitement in the medical world for the possible application of gene therapy in the treatment of diabetes. The glucagon-like peptide-1 (GLP-1) promoter, which is recognised by gut L-cells, is an appealing candidate for gene therapy purposes. The specific properties of L-cells suggest that L-cells and the GLP-1 promoter would be useful for diabetes therapy approaches.

    RESULTS: In this study, L-cells were isolated from a primary intestinal cell line to create suitable target cells for insulin expression studies. The isolated cells displayed L-cell properties and were therefore used as an L-cell surrogate. Next, the isolated L-cells were transfected with the recombinant plasmid consisting of an insulin gene located downstream of the GLP-1 promoter. The secretion tests revealed that an increase in glucose concentration from 5 mM to 25 mM induced insulin gene expression in the L-cells by 2.7-fold. Furthermore, L-cells quickly responded to the glucose stimulation; the amount of insulin protein increased 2-fold in the first 30 minutes and then reached a plateau after 90 minutes.

    CONCLUSION: Our data showed that L-cells efficiently produced the mature insulin protein. In addition, the insulin protein secretion was positively regulated with glucose induction. In conclusion, GLP-1 promoter and L-cell could be potential candidates for diabetes gene therapy agents.

    Matched MeSH terms: Intestinal Mucosa/metabolism
  16. Williams AR, Krych L, Fauzan Ahmad H, Nejsum P, Skovgaard K, Nielsen DS, et al.
    PLoS One, 2017;12(10):e0186546.
    PMID: 29028844 DOI: 10.1371/journal.pone.0186546
    Polyphenols are a class of bioactive plant secondary metabolites that are thought to have beneficial effects on gut health, such as modulation of mucosal immune and inflammatory responses and regulation of parasite burdens. Here, we examined the interactions between a polyphenol-rich diet supplement and infection with the enteric nematode Ascaris suum in pigs. Pigs were fed either a basal diet or the same diet supplemented with grape pomace (GP), an industrial by-product rich in polyphenols such as oligomeric proanthocyanidins. Half of the animals in each group were then inoculated with A. suum for 14 days to assess parasite establishment, acquisition of local and systemic immune responses and effects on the gut microbiome. Despite in vitro anthelmintic activity of GP-extracts, numbers of parasite larvae in the intestine were not altered by GP-supplementation. However, the bioactive diet significantly increased numbers of eosinophils induced by A. suum infection in the duodenum, jejunum and ileum, and modulated gene expression in the jejunal mucosa of infected pigs. Both GP-supplementation and A. suum infection induced significant and apparently similar changes in the composition of the prokaryotic gut microbiota, and both also decreased concentrations of isobutyric and isovaleric acid (branched-chain short chain fatty acids) in the colon. Our results demonstrate that while a polyphenol-enriched diet in pigs may not directly influence A. suum establishment, it significantly modulates the subsequent host response to helminth infection. Our results suggest an influence of diet on immune function which may potentially be exploited to enhance immunity to helminths.
    Matched MeSH terms: Intestinal Mucosa/metabolism
  17. Choo SW, Beh CY, Russell S, White R
    ScientificWorldJournal, 2014;2014:191535.
    PMID: 25389534 DOI: 10.1155/2014/191535
    In Drosophila, protein trap strategies provide powerful approaches for the generation of tagged proteins expressed under endogenous control. Here, we describe expression and functional analysis to evaluate new Ubx and hth protein trap lines generated by the Cambridge Protein Trap project. Both protein traps exhibit spatial and temporal expression patterns consistent with the reported endogenous pattern in the embryo. In imaginal discs, Ubx-YFP is expressed throughout the haltere and 3rd leg imaginal discs, while Hth-YFP is expressed in the proximal regions of haltere and wing discs but not in the pouch region. The Ubx (CPTI000601) line is semilethal as a homozygote. No T3/A1 to T2 transformations were observed in the embryonic cuticle or the developing midgut. The homozygous survivors, however, exhibit a weak haltere phenotype with a few wing-like marginal bristles on the haltere capitellum. Although hth (CPTI000378) is completely lethal as a homozygote, the hth (CPTI000378) /hth (C1) genotype is viable. Using a hth deletion (Df(3R)BSC479) we show that hth (CPTI000378) /Df(3R)BSC479 adults are phenotypically normal. No transformations were observed in hth (CPTI000378), hth (CPTI000378) /hth (C1), or hth (CPTI000378) /Df(3R)BSC479 embryonic cuticles. We have successfully characterised the Ubx-YFP and Hth-YFP protein trap lines demonstrating that the tagged proteins show appropriate expression patterns and produce at least partially functional proteins.
    Matched MeSH terms: Intestinal Mucosa/metabolism
  18. Chuah LH, Roberts CJ, Billa N, Abdullah S, Rosli R
    Colloids Surf B Biointerfaces, 2014 Apr 1;116:228-36.
    PMID: 24486834 DOI: 10.1016/j.colsurfb.2014.01.007
    Curcumin, which is derived from turmeric has gained much attention in recent years for its anticancer activities against various cancers. However, due to its poor absorption, rapid metabolism and elimination, curcumin has a very low oral bioavailability. Therefore, we have formulated mucoadhesive nanoparticles to deliver curcumin to the colon, such that prolonged contact between the nanoparticles and the colon leads to a sustained level of curcumin in the colon, improving the anticancer effect of curcumin on colorectal cancer. The current work entails the ex vivo mucoadhesion study of the formulated nanoparticles and the in vitro effect of mucoadhesive interaction between the nanoparticles and colorectal cancer cells. The ex vivo study showed that curcumin-containing chitosan nanoparticles (CUR-CS-NP) have improved mucoadhesion compared to unloaded chitosan nanoparticles (CS-NP), suggesting that curcumin partly contributes to the mucoadhesion process. This may lead to an enhanced anticancer effect of curcumin when formulated in CUR-CS-NP. Our results show that CUR-CS-NP are taken up to a greater extent by colorectal cancer cells, compared to free curcumin. The prolonged contact offered by the mucoadhesion of CUR-CS-NP onto the cells resulted in a greater reduction in percentage cell viability as well as a lower IC50, indicating a potential improved treatment outcome. The formulation and free curcumin appeared to induce cell apoptosis in colorectal cancer cells, by arresting the cell cycle at G2/M phase. The superior anticancer effects exerted by CUR-CS-NP indicated that this could be a potential treatment for colorectal cancer.
    Matched MeSH terms: Intestinal Mucosa/metabolism
  19. Chen XY, Butt AM, Mohd Amin MCI
    Mol Pharm, 2019 09 03;16(9):3853-3872.
    PMID: 31398038 DOI: 10.1021/acs.molpharmaceut.9b00483
    The development of oral vaccine formulation is crucial to facilitate an effective mass immunization program for various vaccine-preventable diseases. In this work, the efficacy of hepatitis B antigen delivered by bacterial nanocellulose/poly(acrylic acid) composite hydrogel microparticles (MPs) as oral vaccine carriers was assessed to induce both local and systemic immunity. Optimal pH-responsive swelling, mucoadhesiveness, protein drug loading, and drug permeability were characterized by MPs formulated with minimal irradiation doses and acrylic acid concentration. The composite hydrogel materials of bacterial nanocellulose and poly(acrylic acid) showed significantly greater antigen release in simulated intestinal fluid while ensuring the integrity of antigen. In in vivo study, mice orally vaccinated with antigen-loaded hydrogel MPs showed enhanced vaccine immunogenicity with significantly higher secretion of mucosal immunoglobulin A, compared to intramuscular vaccinated control. The splenocytes from the same group demonstrated lymphoproliferation and significant increased secretion of interleukin-2 cytokines upon stimulation with hepatitis B antigen. Expression of CD69 in CD4+ T lymphocytes and CD19+ B lymphocytes in splenocytes from mice orally vaccinated with antigen-loaded hydrogel MPs was comparable to that of the intramuscular vaccinated control, indicating early activation of lymphocytes elicited by our oral vaccine formulation in just two doses. These results demonstrated the potential of antigen-loaded hydrogel MPs as an oral vaccination method for hepatitis B.
    Matched MeSH terms: Intestinal Mucosa/metabolism
  20. Samuel MS, Rath N, Masre SF, Boyle ST, Greenhalgh DA, Kochetkova M, et al.
    Genesis, 2016 Dec;54(12):636-646.
    PMID: 27775859 DOI: 10.1002/dvg.22988
    The serine/threonine kinases ROCK1 and ROCK2 are central mediators of actomyosin contractile force generation that act downstream of the RhoA small GTP-binding protein. As a result, they have key roles in regulating cell morphology and proliferation, and have been implicated in numerous pathological conditions and diseases including hypertension and cancer. Here we describe the generation of a gene-targeted mouse line that enables CRE-inducible expression of a conditionally-active fusion between the ROCK2 kinase domain and the hormone-binding domain of a mutated estrogen receptor (ROCK2:ER). This two-stage system of regulation allows for tissue-selective expression of the ROCK2:ER fusion protein, which then requires administration of estrogen analogues such as tamoxifen or 4-hydroxytamoxifen to elicit kinase activity. This conditional gain-of-function system was validated in multiple tissues by crossing with mice expressing CRE recombinase under the transcriptional control of cytokeratin14 (K14), murine mammary tumor virus (MMTV) or cytochrome P450 Cyp1A1 (Ah) promoters, driving appropriate expression in the epidermis, mammary or intestinal epithelia respectively. Given the interest in ROCK signaling in normal physiology and disease, this mouse line will facilitate research into the consequences of ROCK activation that could be used to complement conditional knockout models. Birth Defects Research (Part A) 106:636-646, 2016. © 2016 Wiley Periodicals, Inc.
    Matched MeSH terms: Intestinal Mucosa/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links