Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Ng WC, Lokanathan Y, Fauzi MB, Baki MM, Zainuddin AA, Phang SJ, et al.
    Sci Rep, 2023 Mar 29;13(1):5128.
    PMID: 36991038 DOI: 10.1038/s41598-023-32080-y
    Glottic insufficiency is one of the voice disorders affecting all demographics. Due to the incomplete closure of the vocal fold, there is a risk of aspiration and ineffective phonation. Current treatments for glottic insufficiency include nerve repair, reinnervation, implantation and injection laryngoplasty. Injection laryngoplasty is favored among these techniques due to its cost-effectiveness and efficiency. However, research into developing an effective injectable for the treatment of glottic insufficiency is currently lacking. Therefore, this study aims to develop an injectable gelatin (G) hydrogel crosslinked with either 1-ethyl-3-(3-dimethylaminpropyl)carbodiimide hydrochloride) (EDC) or genipin (gn). The gelation time, biodegradability and swelling ratio of hydrogels with varying concentrations of gelatin (6-10% G) and genipin (0.1-0.5% gn) were investigated. Some selected formulations were proceeded with rheology, pore size, chemical analysis and in vitro cellular activity of Wharton's Jelly Mesenchymal Stem Cells (WJMSCs), to determine the safety application of the selected hydrogels, for future cell delivery prospect. 6G 0.4gn and 8G 0.4gn were the only hydrogel groups capable of achieving complete gelation within 20 min, exhibiting an elastic modulus between 2 and 10 kPa and a pore size between 100 and 400 μm. Moreover, these hydrogels were biodegradable and biocompatible with WJMSCs, as > 70% viability were observed after 7 days of in vitro culture. Our results suggested 6G 0.4gn and 8G 0.4gn hydrogels as potential cell encapsulation injectates. In light of these findings, future research should focus on characterizing their encapsulation efficiency and exploring the possibility of using these hydrogels as a drug delivery system for vocal fold treatment.
    Matched MeSH terms: Iridoids/chemistry
  2. Young Chuah Y, Yeh Lee Y
    Turk J Gastroenterol, 2023 Aug;34(8):890-891.
    PMID: 37434401 DOI: 10.5152/tjg.2023.23208
    Matched MeSH terms: Iridoids*
  3. Ab Muib, N. N., Mohsin, H. F., Abdul Wahab, I.
    MyJurnal
    Olive or Olea europaea is originated from Mediterranean and cultivated in different regions of the world.
    Each part of the plant has its own unique botanical description and gives a lot of benefits, either for
    biological or common uses. In this research, the pharmacological properties of O. europaea were studied
    via literature reviews. In the laboratory, the extraction of secondary metabolites from the dried leaves of O.
    europaea was followed by the chromatographic investigation. The biological uses of O. europaea and
    detection of the phenolics from olive leaves are highlighted. Specifically, oleuropein is the targeted
    compound worth to be further analyzed.
    Matched MeSH terms: Iridoids
  4. Anwar S, Saleem H, Khurshid U, Ansari SY, Alghamdi S, Al-Khulaidi AWA, et al.
    Nat Prod Res, 2023 Mar;37(6):1023-1029.
    PMID: 35815778 DOI: 10.1080/14786419.2022.2097230
    In the present research, oleuropein (OLE) contents from two Saudi Arabian wild olive trees (Olea europaea L.) leaves (O1 and O2), were collected from two nearby geographical sites differing in altitudes, and were determined via UHPLC-MS analysis. Moreover, total bioactive contents, antioxidant, and cytotoxicity (against MCF-7 and MDA-MB-231 cells) potential were also evaluated. The sample (O2) was found to contain significantly (p 
    Matched MeSH terms: Iridoids/chemistry
  5. Chan Y, Ng SW, Xin Tan JZ, Gupta G, Tambuwala MM, Bakshi HA, et al.
    Chem Biol Interact, 2019 Nov 28;315:108911.
    PMID: 31786185 DOI: 10.1016/j.cbi.2019.108911
    Over the years, the attention of researchers in the field of modern drug discovery and development has become further intense on the identification of active compounds from plant sources and traditional remedies, as they exhibit higher therapeutic efficacies and improved toxicological profiles. Among the large diversity of plant extracts that have been discovered and explored for their potential therapeutic benefits, asperuloside, an iridoid glycoside, has been proven to provide promising effects as a therapeutic agent for several diseases. Although, this potent substance exists in several genera, it is primarily found in plants belonging to the genus Eucommia. Recent decades have seen a surge in the research on Asperuloside, making it one of the most studied natural products in the field of medicine and pharmacology. In this review, we have attempted to study the various reported mechanisms of asperuloside that form the basis of its wide spectrum of pharmacological activities.
    Matched MeSH terms: Iridoids
  6. Ling SK, Komorita A, Tanaka T, Fujioka T, Mihashi K, Kouno I
    Chem Pharm Bull (Tokyo), 2002 Aug;50(8):1035-40.
    PMID: 12192133
    A further investigation of the leaves and stems of Saprosma scortechinii afforded 13 compounds, of which 10 are new compounds. These were elucidated as the bis-iridoid glucosides, saprosmosides G (1) and H (2), the iridoid glucoside, 6-O-epi-acetylscandoside (3), and the anthraquinones, 1-methoxy-3-hydroxy-2-carbomethoxy-9,10-anthraquinone (4), 1-methoxy-3-hydroxy-2-carbomethoxy-9,10-anthraquinone 3-O-beta-primeveroside (5), 1,3-dihydroxy-2-carbomethoxy-9,10-anthraquinone 3-O-beta-primeveroside (6), 1,3,6-trihydroxy-2-methoxymethyl-9,10-anthraquinone (7), 1-methoxy-3,6-dihydroxy-2-hydroxymethyl-9,10-anthraquinone (8), 1,3,6-trihydroxy-2-hydroxymethyl-9,10-anthraquinone 3-O-beta-primeveroside (9), and 3,6-dihydroxy-2-hydroxymethyl-9,10-anthraquinone (10). Structure assignments for all compounds were established by means of mass and NMR spectroscopies, chemical methods, and comparison with published data. The new anthraquinones were derivatives of munjistin and lucidin.
    Matched MeSH terms: Iridoids/isolation & purification*; Iridoids/chemistry
  7. Selvarajah J, Mh Busra MF, Bin Saim A, Bt Hj Idrus R, Lokanathan Y
    J Biomater Sci Polym Ed, 2020 09;31(13):1722-1740.
    PMID: 32458725 DOI: 10.1080/09205063.2020.1774841
    Nasal injury following nasal surgery is an adverse consequence, and prompt treatment should be initiated. Nasal packing, either non-absorbable or absorbable, are commonly used after nasal surgery to prevent bleeding and promote wound healing. In the current study, a novel gelatine sponge crosslinked with genipin was evaluated for suitability to be used as nasal packing and compared to one of the frequently used commercial nasal packing made up of polyurethane. Gelatine at 7% and 10% (w/v) concentration were crosslinked with varying concentrations of genipin, 0.5%, 0.25%, and 0.2% (v/v). The gelatine sponges were further characterised by its water uptake ability, biodegradation, water vapour transmission rate, porosity, contact angle, chemical composition, crosslinking degree, and mechanical properties. The gelatine sponges absorbed five times more water than their dry weight and were degraded within five days. The water vapour transmission rate of the gelatine sponges was 1187.7 ± 430.2 g/(m-2 day) for 7% gelatine and 779.4 ± 375.5 g/(m-2 day) for 10% gelatine. Crosslinking of gelatine with genipin resulted in lower porosity and did not affect the wettability of gelatine sponge (contact angle: 95.3 ± 12.1° for 7% gelatine and 88.4 ± 7.2° for 10% gelatine). In terms of biodegradability, the gelatine sponges took 24-48 h to degrade completely. Genipin crosslinking improved the degradation resistance and mechanical strength of gelatine sponge. The physical and chemical properties of the gelatine sponge, i.e. biodegradability and mechanical durability, support its potential as nasal packing.
    Matched MeSH terms: Iridoids
  8. Ling SK, Tanaka T, Kouno I
    Biol Pharm Bull, 2003 Mar;26(3):352-6.
    PMID: 12612446
    Enzyme inhibitory activities of 14 iridoids previously obtained from two Malaysian medicinal plants, Saprosma scortechinii and Rothmannia macrophylla, were evaluated in vitro using soybean lipoxygenase and bovine testis hyaluronidase. Most of the iridoids, including asperulosidic acid, paederosidic acid, and an epimeric mixture of gardenogenins A and B, did not show any effect on the enzyme activities, except for the bis-iridoids, which inhibited the lipoxygenase activity with their IC(50) values of approximately 1.3 times that of a known inhibitor, fisetin. Structural modification of asperulosidic acid and paederosidic acid through enzymatic hydrolysis by beta-glucosidase resulted in their inhibition towards the enzyme activities, and these activities were enhanced by the presence of some amino acids (lysine, leucine or glutamic acid) or ammonium acetate. Mixtures of gardenogenins A and B; isomers of non-glucosidic iridoids, incubated with amino acid or ammonium acetate did not show any inhibitory effect on the enzyme activities during the 6 h incubation period, except for lysine where spontaneous reaction between the iridoids and amino acid resulted in the inhibition of lipoxygenase activity. The results from these biomimetic reactions suggested that the iridoid aglycons and the intermediates formed by these reactive species could inhibit the enzyme activities, and thus substantiate previous reports that the formation of iridoidal aglycons is a prerequisite for the iridoid glycosides to demonstrate some of the biological activities. In addition, the results also indicated that it is worthwhile to further explore these intermediates as potential anti-inflammatory agents.
    Matched MeSH terms: Iridoids/classification; Iridoids/pharmacology*; Iridoids/chemistry
  9. Khalil KA, Mustafa S, Mohammad R, Ariff AB, Ahmad SA, Dahalan FA, et al.
    Int J Microbiol, 2019;2019:4208986.
    PMID: 31093290 DOI: 10.1155/2019/4208986
    Bovine gelatin is a biopolymer which has good potential to be used in encapsulating matrices for probiotic candidate Bifidobacterium pseudocatenulatum strain G4 (G4) because of its amphoteric nature characteristic. Beads were prepared by the extrusion method using genipin and sodium alginate as a cross-linking agent. The optimisation of bovine gelatin-genipin-sodium alginate combinations was carried out using face central composition design (FCCD) to investigate G4 beads' strength, before and after exposed to simulated gastric (SGF), intestinal fluids (SIF), and encapsulation yield. A result of ANOVA and the polynomial regression model revealed the combinations of all three factors have a significant effect (p < 0.05) on the bead strength. Meanwhile, for G4 encapsulation yield, only genipin showed less significant effect on the response. However, the use of this matrix remained due to the intermolecular cross-linking ability with bovine gelatin. Optimum compositions of bovine gelatin-genipin-sodium alginate were obtained at 11.21% (w/v), 1.96 mM, and 2.60% (w/v), respectively. A model was validated for accurate prediction of the response and showed no significant difference (p > 0.05) with experimental values.
    Matched MeSH terms: Iridoids
  10. Manickam B, Sreedharan R, Elumalai M
    Curr Drug Deliv, 2014;11(1):139-45.
    PMID: 24041312
    One of the popular approaches in controlling drug delivery from the polymeric carriers is suitably achieved by the inclusion of crosslinking agents into the formulations at different concentrations. Nevertheless, addition of the chemical crosslinkers such as glutaraldehyde, formaldehyde etc, used in the drug delivery systems causes very serious cytotoxic reactions. These chemical crosslinking agents did not offer any significant advantageous effects when compared to the natural crosslinking agents for instance genipin, which is quite less toxic, biocompatible and offers very stable crosslinked products. Based on the earlier reports the safety of this particular natural crosslinker is very well established, since it has been widely used as a Chinese traditional medicine for long-time, isolated from fruits of the plant Gardenia jasminoides Ellis. This concise article largely portrayed the value of this unique natural crosslinker, utilized in controlling the drug delivery from the various formulations.
    Matched MeSH terms: Iridoids/chemistry*
  11. Hezaveh H, Muhamad II
    Carbohydr Polym, 2012 Jun 5;89(1):138-45.
    PMID: 24750615 DOI: 10.1016/j.carbpol.2012.02.062
    In this article, silver and magnetite nanofillers were synthesized in modified κ-carrageenan hydrogels using the in situ method. The effect of metallic nanoparticles in gastro-intestinal tract (GIT) release of a model drug (methylene blue) has been investigated. The effect of nanoparticles loading and genipin cross-linking on GIT release of nanocomposite is also studied to finally provide the most suitable drug carrier system. In vitro release studies revealed that using metallic nanocomposites hydrogels in GIT studies can improve the drug release in intestine and minimize it in the stomach. It was found that cross-linking and nanofiller loading can significantly improve the targeted release. Therefore, applying metallic nanoparticles seems to be a promising strategy to develop GIT controlled drug delivery.
    Matched MeSH terms: Iridoids/chemistry
  12. Al-jarrah AM, Abdul Rahman A, Shahrim I, Razak NN, Ababneh B, Tousi ET
    Phys Med, 2016 Jan;32(1):36-41.
    PMID: 26494156 DOI: 10.1016/j.ejmp.2015.09.003
    Genipin gel dosimeters are hydrogels infused with a radiation-sensitive material which yield dosimetric information in three dimensions (3D). The effect of inorganic salts and glucose on the visible absorption dose-response, melting points and mass density of genipin gel dosimeters has been experimentally evaluated using 6-MV LINAC photons. As a result, the addition of glucose with optimum concentration of 10% (w/w) was found to improve the thermal stability of the genipin gel and increase its melting point (Tm) by 6 °C accompanied by a slight decrease of dose-response. Furthermore, glucose helps to adjust the gel mass density to obtain the desired tissue-equivalent properties. A drop of Tm was observed when salts were used as additives. As the salt concentration increased, gel Tm decreased. The mass density and melting point of the genipin gel could be adjusted using different amounts of glucose that improved the genipin gel suitability for 3D dose measurements without introducing additional toxicity to the final gel.
    Matched MeSH terms: Iridoids/chemistry*
  13. Ching KY, Andriotis O, Sengers B, Stolz M
    J Biomater Appl, 2021 09;36(3):503-516.
    PMID: 33730922 DOI: 10.1177/08853282211002015
    Towards optimizing the growth of extracellular matrix to produce repair cartilage for healing articular cartilage (AC) defects in joints, scaffold-based tissue engineering approaches have recently become a focus of clinical research. Scaffold-based approaches by electrospinning aim to support the differentiation of chondrocytes by providing an ultrastructure similar to the fibrillar meshwork in native cartilage. In a first step, we demonstrate how the blending of chitosan with poly(ethylene oxide) (PEO) allows concentrated chitosan solution to become electrospinnable. The chitosan-based scaffolds share the chemical structure and characteristics of glycosaminoglycans, which are important structural components of the cartilage extracellular matrix. Electrospinning produced nanofibrils of ∼100 nm thickness that are closely mimicking the size of collagen fibrils in human AC. The polymer scaffolds were stabilized in physiological conditions and their stiffness was tuned by introducing the biocompatible natural crosslinker genipin. We produced scaffolds that were crosslinked with 1.0% genipin to obtain values of stiffness that were in between the stiffness of the superficial zone human AC of 600 ± 150 kPa and deep zone AC of 1854 ± 483 kPa, whereas the stiffness of 1.5% genipin crosslinked scaffold was similar to the stiffness of deep zone AC. The scaffolds were degradable, which was indicated by changes in the fibril structure and a decrease in the scaffold stiffness after seven months. Histological and immunohistochemical analysis after three weeks of culture with human articular chondrocytes (HACs) showed a cell viability of over 90% on the scaffolds and new extracellular matrix deposited on the scaffolds.
    Matched MeSH terms: Iridoids/chemistry*
  14. Fauzi MB, Rashidbenam Z, Bin Saim A, Binti Hj Idrus R
    Polymers (Basel), 2020 Nov 25;12(12).
    PMID: 33255581 DOI: 10.3390/polym12122784
    Three-dimensional (3D) in vitro skin models have been widely used for cosmeceutical and pharmaceutical applications aiming to reduce animal use in experiment. This study investigate capability of ovine tendon collagen type I (OTC-I) sponge suitable platform for a 3D in vitro skin model using co-cultured skin cells (CC) containing human epidermal keratinocytes (HEK) and human dermal fibroblasts (HDF) under submerged (SM) and air-liquid interface (ALI) conditions. Briefly, the extracted OTC-I was freeze-dried and crosslinked with genipin (OTC-I_GNP) and carbodiimide (OTC-I_EDC). The gross appearance, physico-chemical characteristics, biocompatibility and growth profile of seeded skin cells were assessed. The light brown and white appearance for the OTC-I_GNP scaffold and other groups were observed, respectively. The OTC-I_GNP scaffold demonstrated the highest swelling ratio (~1885%) and water uptake (94.96 ± 0.14%). The Fourier transformation infrared demonstrated amide A, B and I, II and III which represent collagen type I. The microstructure of all fabricated sponges presented a similar surface roughness with the presence of visible collagen fibers and a heterogenous porous structure. The OTC-I_EDC scaffold was more toxic and showed the lowest cell attachment and proliferation as compared to other groups. The micrographic evaluation revealed that CC potentially formed the epidermal- and dermal-like layers in both SM and ALI that prominently observed with OTC-I_GNP compared to others. In conclusion, these results suggest that OTC_GNP could be used as a 3D in vitro skin model under ALI microenvironment.
    Matched MeSH terms: Iridoids
  15. Arif MMA, Fauzi MB, Nordin A, Hiraoka Y, Tabata Y, Yunus MHM
    Polymers (Basel), 2020 Nov 13;12(11).
    PMID: 33202700 DOI: 10.3390/polym12112678
    Gelatin possesses biological properties that resemble native skin and can potentially be fabricated as a skin substitute for full-thickness wound treatment. The native property of gelatin, whereby it is easily melted and degraded at body temperature, could prevent its biofunctionality for various applications. This study aimed to fabricate and characterise buffalo gelatin (Infanca halal certified) crosslinked with chemical type crosslinker (genipin and genipin fortified with EDC) and physicaly crosslink using the dihydrothermal (DHT) method. A porous gelatin sponge (GS) was fabricated by a freeze-drying process followed by a complete crosslinking via chemical-natural and synthetic-or physical intervention using genipin (GNP), 1-ethyl-3-(3-dimethylaminopropyl) (EDC) and dihydrothermal (DHT) methods, respectively. The physicochemical, biomechanical, cellular biocompatibility and cell-biomaterial interaction of GS towards human epidermal keratinocytes (HEK) and dermal fibroblasts (HDF) were evaluated. Results showed that GS had a uniform porous structure with pore size ranging between 60 and 200 µm with high porosity (>78.6 ± 4.1%), high wettability (<72.2 ± 7.0°), high tensile strain (>13.65 ± 1.10%) and 14 h of degradation rate. An increase in the concentration and double-crosslinking approach demonstrated an increment in the crosslinking degree, enzymatic hydrolysis resistance, thermal stability, porosity, wettability and mechanical strength. The GS can be tuned differently from the control by approaching the GS via a different crosslinking strategy. However, a decreasing trend was observed in the pore size, water retention and water absorption ability. Crosslinking with DHT resulted in large pore sizes (85-300 µm) and low water retention (236.9 ± 18.7 g/m2·day) and a comparable swelling ratio with the control (89.6 ± 7.1%). Moreover no changes in the chemical content and amorphous phase identification were observed. The HEK and HDF revealed slight toxicity with double crosslinking. HEK and HDF attachment and proliferation remain similar to each crosslinking approach. Immunogenicity was observed to be higher in the double-crosslinking compared to the single-crosslinking intervention. The fabricated GS demonstrated a dynamic potential to be tailored according to wound types by manipulating the crosslinking intervention.
    Matched MeSH terms: Iridoids
  16. Zakuwan SZ, Ahmad I, Abu Tahrim N, Mohamed F
    Polymers (Basel), 2021 Apr 06;13(7).
    PMID: 33917600 DOI: 10.3390/polym13071176
    In this study, we fabricated a modified biomaterial based on chitosan and gelatin, which is an intrinsic hydrophilic membrane for oil-water separation to clean water contamination by oil. Modification of the membrane with a non-toxic natural crosslinker, genipin, significantly enhanced the stability of the biopolymer membrane in a water-based medium towards an eco-friendly environment. The effects of various compositions of genipin-crosslinked chitosan-gelatin membrane on the rheological properties, thermal stability, and morphological structure of the membrane were investigated using a dynamic rotational rheometer, thermogravimetry analysis, and chemical composition by attenuated total reflectance spectroscopy (ATR). Modified chitosan-gelatin membrane showed completely miscible blends, as determined by field-emission scanning electron microscopy, differential scanning calorimetry, and ATR. Morphological results showed membrane with establish microstructure to further experiment as filtration product. The membranes were successfully tested for their oil-water separation efficiencies. The membrane proved to be selective and effective in separating water from an oil-water mixture. The optimum results achieved a stable microporous structure of the membrane (microfiltration) and a separation efficiency of above 98%. The membrane showed a high permeation flux, generated as high as 698 and 420 L m-2 h-1 for cooking and crude oils, respectively. Owing to its outstanding recyclability and anti-fouling performance, the membrane can be washed away easily, ensuring the reusability of the prepared membrane.
    Matched MeSH terms: Iridoids
  17. Nur Fadhilah Mohamad Haris, Mohd Kamal Nik Hasan, Mizaton Hazizul Hasan, Ibtisam Abdul Wahab
    MyJurnal
    This article discusses on the natural compounds from the ant plant (Myrmecodia species, family: Rubiaceae). The ethyl
    acetate (EtOAc) extract from the tuber of M. platytyrea was fractionated by using medium pressure liquid chromatography,
    giving eight fractions (F1-F8). Those fractions were evaluated using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH)
    assay. Fraction F5 was recorded as potent (EC50 = 21.57 ± 1.40 µg/mL). Then, it was purified by using column
    chromatography (CC) (mobile phase = chloroform: EtOAc). From the CC, ten fractions (F5F1-F5F10) were obtained
    and compound (1) was isolated from F5F3 via preparative thin layer chromatography (TLC). After spraying with
    anisaldehyde-sulphuric reagent, compound (1) gave a green TLC spot (Rf
    = 0.65, 100% CHCl3
    , multiple development).
    The 1
    H-Nuclear Magnetic Resonance (NMR) spectroscopy (500 MHz, CDCl3
    ) was performed to determine the chemical
    framework of (1). This compound was identified as morindolide, having an iridoid structure. Meanwhile, the mass
    spectra for compounds (2) and (3) were analysed. The data presented the molecular ion at m/z 375 [M-H]- and 255,
    suggesting the formulation of 2-(2-methylbutyryl)phloroglucinol glucoside and a flavanone, respectively. From the
    literature, compound (1) was firstly isolated from a Chinese natural medicine, the dried root of Morinda officinalis
    (family: Rubiaceae). The flavonoids are also included as the biologically active compounds from Myrmecodia. In
    short, this is the first occurrence of morindolide from the ant plant.
    Matched MeSH terms: Iridoids
  18. Pan Q, Saiman MZ, Mustafa NR, Verpoorte R, Tang K
    PMID: 26854826 DOI: 10.1016/j.jchromb.2016.01.034
    A rapid and simple reversed phase liquid chromatographic system has been developed for simultaneous analysis of terpenoid indole alkaloids (TIAs) and their precursors. This method allowed separation of 11 compounds consisting of eight TIAs (ajmalicine, serpentine, catharanthine, vindoline, vindolinine, vincristine, vinblastine, and anhydrovinblastine) and three related precursors i.e., tryptophan, tryptamine and loganin. The system has been applied for screening the TIAs and precursors in Catharanthus roseus plant extracts. In this study, different organs i.e., flowers, leaves, stems, and roots of C. roseus were investigated. The results indicate that TIAs and precursor accumulation varies qualitatively and quantitatively in different organs of C. roseus. The precursors showed much lower levels than TIAs in all organs. Leaves and flowers accumulate higher level of vindoline, catharanthine and anhydrovinblastine while roots have higher level of ajmalicine, vindolinine and serpentine. Moreover, the alkaloid profiles of leaves harvested at different ages and different growth stages were studied. The results show that the levels of monoindole alkaloids decreased while bisindole alkaloids increased with leaf aging and upon plant growth. The HPLC method has been successfully applied to detect TIAs and precursors in different types of C. roseus samples to facilitate further study of the TIA pathway and its regulation in C. roseus plants.
    Matched MeSH terms: Iridoids
  19. Busra FM, Lokanathan Y, Nadzir MM, Saim A, Idrus RBH, Chowdhury SR
    Malays J Med Sci, 2017 Mar;24(2):33-43.
    PMID: 28894402 DOI: 10.21315/mjms2017.24.2.5
    INTRODUCTION: Collagen type I is widely used as a biomaterial for tissue-engineered substitutes. This study aimed to fabricate different three-dimensional (3D) scaffolds using ovine tendon collagen type I (OTC-I), and compare the attachment, proliferation and morphological features of human dermal fibroblasts (HDF) on the scaffolds.

    METHODS: This study was conducted between the years 2014 to 2016 at the Tissue Engineering Centre, UKM Medical Centre. OTC-I was extracted from ovine tendon, and fabricated into 3D scaffolds in the form of sponge, hydrogel and film. A polystyrene surface coated with OTC-I was used as the 2D culture condition. Genipin was used to crosslink the OTC-I. A non-coated polystyrene surface was used as a control. The mechanical strength of OTC-I scaffolds was evaluated. Attachment, proliferation and morphological features of HDF were assessed and compared between conditions.

    RESULTS: The mechanical strength of OTC-I sponge was significantly higher than that of the other scaffolds. OTC-I scaffolds and the coated surface significantly enhanced HDF attachment and proliferation compared to the control, but no differences were observed between the scaffolds and coated surface. In contrast, the morphological features of HDF including spreading, filopodia, lamellipodia and actin cytoskeletal formation differed between conditions.

    CONCLUSION: OTC-I can be moulded into various scaffolds that are biocompatible and thus could be suitable as scaffolds for developing tissue substitutes for clinical applications and in vitro tissue models. However, further study is required to determine the effect of morphological properties on the functional and molecular properties of HDF.

    Matched MeSH terms: Iridoids
  20. Gobinathan S, Zainol SS, Azizi SF, Iman NM, Muniandy R, Hasmad HN, et al.
    J Biomater Sci Polym Ed, 2018 12;29(17):2051-2067.
    PMID: 29983100 DOI: 10.1080/09205063.2018.1485814
    Amniotic membrane has the potential to be used as scaffold in various tissue engineering applications. However, increasing its biostability at the same time maintaining its biocompatibility is important to enhance its usage as a scaffold. This studied characteristics genipin-crosslinked amniotic membrane as a bioscaffold. Redundant human amniotic membranes (HAM) divided into native (nAM), decellularized (dAM) and genipin-crosslinked (clAM) groups. The dAM and clAM group were decellularized using thermolysin (TL) and sodium hydroxide (NaOH) solution. Next, clAM group was crosslinked with 0.5% and 1.0% (w/v) genipin. The HAM was then studied for in vitro degradation, percentage of swelling, optical clarity, ultrastructure and mechanical strength. Meanwhile, fibroblasts isolated from nasal turbinates were then seeded onto nAM, dAM and clAM for biocompatibility studies. clAM had the slowest degradation rate and were still morphologically intact after 30 days of incubation in 0.01% collagenase type 1 solution. The dAM had a significantly highest percentage of swelling than other groups (p 
    Matched MeSH terms: Iridoids/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links