Examination of the EtOH extract of the Malayan Tabernaemontana corymbosa resulted in the isolation of three new alkaloids, viz., cononuridine (1), an unusual hexacyclic, iboga-derived, monoterpenoid indole characterized by contraction of the tetrahydroazepine C-ring and incorporation of an additional isoxazolidine ring, taberisidine (2), a seco-corynanthean alkaloid, and conofolidine (3), an Aspidosperma-Aspidosperma bisindole that showed pronounced in vitro growth inhibitory activity against an array of human cancer cell lines, including KB, vincristine-resistant KB, PC-3, LNCaP, MCF7, MDA-MB-231, HT-29, and HCT 116 cells. The structures and absolute configurations of 1 and 3 and the absolute configuration of the novel pyridopyrimidine indole alkaloid vernavosine (4) were confirmed by X-ray diffraction analysis. A reasonable biosynthesis route to cononuridine starting from an iboga precursor is presented.
Six new indole alkaloids, viz., cononusine (1, a rare example of an iboga-pyrrolidone conjugate), ervaluteine (2), vincamajicine (3), tacamonidine (4), 6-oxoibogaine (5), and N(4)-chloromethylnorfluorocurarine chloride (6), and two new vobasinyl-iboga bisindole alkaloids, ervatensines A (7) and B (8), in addition to other known alkaloids, were isolated from the stem-bark extract of the Malayan Tabernaemontana corymbosa. The structures of these alkaloids were established on the basis of NMR and MS analyses and, in one instance (7), confirmed by X-ray diffraction analysis. Vincamajicine (3) showed appreciable activity in reversing multidrug resistance in vincristine-resistant KB cells (IC50 2.62 μM), while ervatensines A (7) and B (8) and two other known bisindoles displayed pronounced in vitro growth inhibitory activity against human KB cells (IC50 < 2 μM). Compounds 7 and 8 also showed good growth inhibitory activity against A549, MCF-7, MDA-468, HCT-116, and HT-29 cells (IC50 0.70-4.19 μM). Cell cycle and annexin V-FITC apoptosis assays indicated that compounds 7 and 8 inhibited proliferation of HCT-116 and MDA-468 cells, evoking apoptotic and necrotic cell death.
Microtubule disassembly inhibitory properties have been established for the known polyisoprenylated benzophenones xanthochymol (1a) and guttiferone E (1b). The compounds were isolated from the fruits of Garcinia pyrifera collected in Malaysia. A structure-activity relationship study, including natural and semisynthetic derivatives, delineated some structural features necessary for the interaction with tubulin within this compound class.
In our search for inhibitors of the antiapoptotic protein Bcl-xL, investigation of Xylopia caudata afforded a new diterpenoid, ent-trachyloban-4beta-ol (2), and five known ent-trachylobane or ent-atisane compounds. Only ent-trachyloban-18-oic acid (1) exhibited weak binding activity to Bcl-xL. These compounds exhibited cytotoxicity against KB and HCT-116 cell lines with IC(50) values between 10 and 30 microM. Bioconversion of compound 1 by Rhizopus arrhizus afforded new hydroxylated metabolites (3-7) of the ent-trachylobane and ent-kaurene type and compound 8, with a rearranged pentacyclic carbon framework that was named rhizopene. Compounds 3-8 were noncytotoxic to the two cancer cell lines, and compounds 3 and 5 exhibited only weak binding affinity for Bcl-xL.
Seven new indole alkaloids of the Strychnos type, leuconicines A-G (1-7), and a new eburnan alkaloid, (-)-eburnamaline (8), were isolated from the stem-bark extract of two Malayan Leuconotis species. The structures of these alkaloids were established using NMR and MS analysis and in the case of 8 also by partial synthesis. Alkaloids 1-5 reversed multidrug resistance in vincristine-resistant KB cells.
A cytotoxic bisindole alkaloid possessing an unprecedented structure in which two indole moieties are bridged by an aromatic spacer unit has been isolated from Alstonia angustifolia. The structure was established by analysis of the spectroscopic data and confirmed by X-ray diffraction analysis. A possible biogenetic pathway from pyrocatechuic acid and pleiocarpamine is presented.
Seven new indole alkaloids of the Aspidosperma type, jerantinines A-G (1-7), were isolated from a leaf extract of the Malayan Tabernaemontana corymbosa. The structures were established using NMR and MS analysis. Five of the alkaloids isolated and two derivatives (1-5, 8, 9) displayed pronounced in vitro cytotoxicity against human KB cells (IC50 < 1 microg/mL).
Four complex flavanones, kurziflavolactones A [2], B [3], C [4], and D [5] and a complex chalcone 6 with an unprecedented carbon side chain on the flavanone or chalcone A ring have been isolated from a Malaysian plant, Cryptocarya kurzii (Lauraceae). Their structures were determined by extensive spectroscopic analysis, especially 2D nmr experiments. Compounds 3 and 6 showed slight cytotoxicity against KB cells, with IC50 values of 4 and 15 micrograms/ml, respectively. A biosynthetic pathway for the formation of these compounds is suggested.
Four new compounds, (+)- and (-)-ecarlottone (1), (±)-fislatifolione (5), (±)-isofislatifolione (6), and (±)-fislatifolic acid (7), and the known desmethoxyyangonin (2), didymocarpin-A (3), and dehydrodidymocarpin-A (4) were isolated from the stem bark of Fissistigma latifolium, by means of bioassay-guided purification using an in vitro affinity displacement assay based on the modulation of Bcl-xL/Bak and Mcl-1/Bid interactions. The structures of the new compounds were elucidated by NMR spectroscopic data analysis, and the absolute configurations of compounds (+)-1 and (-)-1 were assigned by comparison of experimental and computed ECD spectra. (-)-Ecarlottone 1 exhibited a potent antagonistic activity on both protein-protein associations with Ki values of 4.8 μM for Bcl-xL/Bak and 2.4 μM for Mcl-1/Bid.
Three new indole alkaloids (1-3), named grandilodines A-C, and five known ones were obtained from the Malayan Kopsia grandifolia. The structures were established using NMR and MS analyses and, in the case of 1 and 2, were confirmed by X-ray diffraction analyses. Alkaloids 1, 3, and lapidilectine B (8) were found to reverse multidrug resistance in vincristine-resistant KB cells.
Leucofoline and leuconoline, representing the first members of the aspidospermatan-aspidospermatan and eburnane-sarpagine subclasses of the bisindole alkaloids, respectively, were isolated from the Malayan Leuconotis griffithii. The structures of these bisindole alkaloids were established using NMR and MS analysis, and in the case of leuconoline, confirmed by X-ray diffraction analysis. Both alkaloids showed weak cytotoxicity towards human KB cells.
A total of 25 alkaloids were isolated from the leaf and stem-bark extracts of Alstonia spatulata, of which five are new alkaloids of the strychnan type (alstolucines A-E, 1-5) and the other, a new alkaloid of the secoangustilobine A type (alstolobine A, 6). The structures of these alkaloids were established using NMR and MS analysis and, in the case of alstolucine B (2), also confirmed by X-ray diffraction analysis. A reinvestigation of the stereochemical assignment of scholaricine (13) by NMR and X-ray analyses indicated that the configuration at C-20 required revision. Alkaloids 1, 2, 6, 7, 9, 10, and 13 reversed multidrug resistance in vincristine-resistant KB cells.
Four new bisindole alkaloids of the Strychnos-Strychnos type, leucoridines A-D (1-4), were isolated from the stem-bark extract of Leuconotis griffithii. Alkaloids 1-4 showed moderate cytotoxicity against drug-sensitive and vincristine-resistant human KB cells.
Four new indole alkaloids were obtained from two Kopsia species, 6-oxoleuconoxine (1) from the leaf extract of K. griffithii and kopsinitarine E (2), kopsijasminine (3), and kopsonoline (4) from the stem-bark extract of K. teoi. The structures of these alkaloids were determined using NMR and MS analysis. Kopsijasminine (3) showed moderate activity in reversing multidrug resistance in vincristine-resistant KB cells.
Nine new indole alkaloids, rhazinoline (1), 19(S)-methoxytubotaiwine (2), 19(R)-methoxytubotaiwine (3), kopsamidine A (4), kopsamidine B (5), kopsinidine A (6), kopsinidine B (7), paucidactine C (8), and pericine N-oxide (9), in addition to several recently reported novel indoles and 34 other known ones, were obtained from the stem-bark extract of the Malayan Kopsia arborea. The structures were determined using NMR and MS analysis. Valparicine (12) showed pronounced cytotoxic effects against KB and Jurkat cells (IC(50) 13.0 and 0.91 microM, respectively).
Nine 3,4-secoapotirucallanes, argentinic acids A-I, were isolated from the bark of Aglaia argentea and transformed to their methyl esters 1-9. The structures were determined by spectral and chemical means. Compounds 1-8 showed moderate cytotoxic activity against KB cells (IC50 1.0-3.5 microg/mL).
Bioassay-guided fractionation of an ethyl acetate extract of Fissistigma lanuginosum led to the isolation of the known chalcone pedicin [1], which inhibited tubulin assembly into microtubules (IC50 value of 300 microM). From the same EtOAc fraction, two new condensed chalcones, fissistin [2] and isofissistin [3], which showed cytotoxicity against KB cells, were also obtained, together with the inactive dihydropedicin [4] and 6,7-dimethoxy-5,8-dihydroxyflavone [5]. In addition, the aminoquinones 6, 8, and 9 were isolated from the alkaloid extract. These compounds were artifacts, prepared by treatment of 1, 4, and 2, respectively, with NH4OH. The structures of the new compounds were elucidated by spectral methods, especially 2D nmr.
Bioassay-guided fractionation of the extracts of Zieridium pseudobtusifolium and Acronychia porteri led to the isolation of 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone [1], which showed activity against (KB) human nasopharyngeal carcinoma cells (IC50 0.04 micrograms/ml) and inhibited tubulin assembly into microtubules (IC50 12 microM). Two other known flavonols, digicitrin [2] and 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone [5], were also isolated together with three new ones, 3-O-demethyldigicitrin [3], 3,5,3'-trihydroxy-6,7,8,4'-tetramethoxyflavone [4], and 3,5-dihydroxy-6,7,8,3',4'-pentamethoxyflavone [6]. All of these flavonols showed cytotoxic activity against KB cells.
Eleven new indole alkaloids (1-11) comprising seven aspidofractinine and four eburnane alkaloids, were isolated from the stem-bark extract of Kopsia pauciflora occurring in Malaysian Borneo. The aspidofractinine alkaloids include a ring-contracted, an additional ring-fused, a paucidactine regioisomer, two paucidactine, and one kopsine alkaloid. The structures of several of these alkaloids were also confirmed by X-ray diffraction analyses. The bisindole alkaloids isolated, norpleiomutine and kopsoffinol, showed in vitro growth inhibitory activity against human PC-3, HCT-116, MCF-7, and A549 cells and moderate effects in reversing multidrug-resistance in vincristine-resistant human KB cells.
Eleven indole alkaloids, comprising four corynanthean, two eburnane, one aspidofractinine, one secoleuconoxine, one andranginine, and two pauciflorine type alkaloids were isolated from the stem-bark and leaf extracts of Kopsia pauciflora. Their structures were determined using NMR and MS analyses. The catharinensine type alkaloid kopsirensine B and the secoleuconoxine alkaloid arboloscine A showed moderate to weak activity in reversing MDR in vincristine-resistant KB cells. The alkaloid content was markedly different compared to that of a sample from Malaysian Borneo.