Displaying publications 1 - 20 of 154 in total

Abstract:
Sort:
  1. Ariffin AC
    World J Surg, 2018 05;42(5):1563-1564.
    PMID: 28932972 DOI: 10.1007/s00268-017-4252-8
    Matched MeSH terms: Lactic Acid*
  2. Rahim NA, Luthfi AAI, Bukhari NA, Tan JP, Abdul PM, Manaf SFA
    Sci Rep, 2023 Apr 08;13(1):5787.
    PMID: 37031272 DOI: 10.1038/s41598-023-32964-z
    The aim of this study was to establish an improved pretreatment and fermentation method i.e. immobilized cells for high recovery of fermentable sugars from palm kernel cake (PKC) and its effects on fermentability performance by Actinobacillus succinogenes 130Z in the conversion of the fermentable sugar to lactic acid. The effects of oxalic acid concentrations (1-6% w/v) and residence times (1-5 h) on the sugar recovery were initially investigated and it was found that the highest mannose concentration was 25.1 g/L at the optimum hydrolysis conditions of 4 h and 3% (w/v) oxalic acid. The subsequent enzymatic saccharification of the pretreated PKC afforded the highest enzymatic digestibility with the recovered sugars amounting to 25.18 g/L and 9.14 g/L of mannose and glucose, respectively. Subsequently, the fermentability performance of PKC hydrolysate was evaluated and compared in terms of cultivation phases (i.e. mono and dual-phases), carbonate loadings (i.e. magnesium and sodium carbonates), and types of sugars (i.e. glucose and mannose). The highest titer of 19.4 g/L lactic acid was obtained from the fermentation involving A. succinogenes 130Z in dual-phase cultivation supplemented with 30 g/L of magnesium carbonate. Lactic acid production was further enhanced by using immobilized cells with coconut shell-activated carbon (CSAC) of different sizes (A, B, C, and D) in the repeated batch cultivation of dual-phase fermentation producing 31.64 g/L of lactic acid. This work sheds light on the possibilities to enhance the utilization of PKC for lactic acid production via immobilized A. succinogenes 130Z.
    Matched MeSH terms: Lactic Acid*
  3. Hisham MB, Hashim AM, Mohd Hanafi N, Abdul Rahman N, Abdul Mutalib NE, Tan CK, et al.
    Sci Rep, 2022 May 02;12(1):7107.
    PMID: 35501317 DOI: 10.1038/s41598-022-08819-4
    Silage produced in tropical countries is prone to spoilage because of high humidity and temperature. Therefore, determining indigenous bacteria as potential inoculants is important to improve silage quality. This study aimed to determine bacterial community and functional changes associated with ensiling using amplicon metagenomics and to predict potential bacterial additives associated with silage quality in the Malaysian climate. Silages of two forage crops (sweet corn and Napier) were prepared, and their fermentation properties and functional bacterial communities were analysed. After ensiling, both silages were predominated by lactic acid bacteria (LAB), and they exhibited good silage quality with significant increment in lactic acid, reductions in pH and water-soluble carbohydrates, low level of acetic acid and the absence of propionic and butyric acid. LAB consortia consisting of homolactic and heterolactic species were proposed to be the potential bacterial additives for sweet corn and Napier silage fermentation. Tax4fun functional prediction revealed metabolic pathways related to fermentation activities (bacterial division, carbohydrate transport and catabolism, and secondary metabolite production) were enriched in ensiled crops (p lactic acid. This research has provided a comprehensive understanding of bacterial communities before and after ensiling, which can be useful for desirable silage fermentation in Malaysia.
    Matched MeSH terms: Lactic Acid/metabolism
  4. Tan YT, Ngoh GC, Chua ASM
    Bioresour Technol, 2019 Jun;281:359-366.
    PMID: 30831515 DOI: 10.1016/j.biortech.2019.02.010
    In this study, acidic deep eutectic solvents (DES) synthesized from various organic carboxylic acid hydrogen bond donors were applied to lignocellulosic oil palm empty fruit bunch (EFB) pretreatment. The influence of functional group types on acid and their molar ratios with hydrogen bond acceptor on lignin extraction were evaluated. The result showed presence of hydroxyl group and short alkyl chain enhanced biomass fractionation and lignin extraction. Choline chloride:lactic acid (CC-LA) with the ratio of 1:15 and choline chloride:formic acid (CC-FA) with 1:2 ratio extracted more than 60 wt% of lignin. CC-LA DES-extracted lignin (DEEL) exhibited comparable reactivity with technical and commercial lignin based on its phenolic hydroxyl content (3.33-3.72 mmol/glignin). Also, the DES-pretreated EFB comprised of enriched glucan content after biopolymer fractionation. Both DES-pretreated EFB and DEEL can be potential feedstock for subsequent conversion processes. This study presented DES as an effective and facile pretreatment method for reactive lignin extraction.
    Matched MeSH terms: Lactic Acid/chemistry
  5. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R
    Adv Drug Deliv Rev, 2016 12 15;107:333-366.
    PMID: 27046295 DOI: 10.1016/j.addr.2016.03.010
    Global awareness of material sustainability has increased the demand for bio-based polymers like poly(lactic acid) (PLA), which are seen as a desirable alternative to fossil-based polymers because they have less environmental impact. PLA is an aliphatic polyester, primarily produced by industrial polycondensation of lactic acid and/or ring-opening polymerization of lactide. Melt processing is the main technique used for mass production of PLA products for the medical, textile, plasticulture, and packaging industries. To fulfill additional desirable product properties and extend product use, PLA has been blended with other resins or compounded with different fillers such as fibers, and micro- and nanoparticles. This paper presents a review of the current status of PLA mass production, processing techniques and current applications, and also covers the methods to tailor PLA properties, the main PLA degradation reactions, PLA products' end-of-life scenarios and the environmental footprint of this unique polymer.
    Matched MeSH terms: Lactic Acid/chemistry
  6. Roslan E, Magdalena JA, Mohamed H, Akhiar A, Shamsuddin AH, Carrere H, et al.
    Bioresour Technol, 2023 Jun;378:128985.
    PMID: 37001698 DOI: 10.1016/j.biortech.2023.128985
    This study aims to investigate the impact of utilizing lactic acid fermentation (LAF) as storage method of food waste (FW) prior to dark fermentation (DF). LAF of FW was carried out in batches at six temperatures (4 °C, 10 °C, 23 °C, 35 °C, 45 °C, and 55 °C) for 15 days followed by biological hydrogen potential (BHP) tests. Different storage temperatures resulted in different metabolites distribution, with either lactate or ethanol being dominant (159.2 ± 20.6 mM and 234.4 ± 38.2 mM respectively), but no negative impact on BHP (averaging at 94.6 ± 25.1 mL/gVS). Maximum hydrogen production rate for stored FW improved by at least 57%. Microbial analysis showed dominance of lactic acid bacteria (LAB) namely Lactobacillus sp., Lactococcus sp., Weisella sp., Streptococcus sp. and Bacillus sp. after LAF. Clostridium sp. emerged after DF, co-existing with LAB. Coupling LAF as a storage method was demonstrated as a novel strategy of FW management for DF, for a wide range of temperatures.
    Matched MeSH terms: Lactic Acid/metabolism
  7. Abdul Samah O, Ibrahim N, Alimon H, Abdul Karim MI
    World J Microbiol Biotechnol, 1993 Sep;9(5):603-4.
    PMID: 24420212 DOI: 10.1007/BF00386306
    Acetic and lactic acid bacteria on fermented cocoa beans were maximally 2.0×10(6) and 1.9×10(6) c.f.u./g wet wt, respectively. Acetic and lactic acids were detected on the second and fourth days of fermentation and were maximally 140 and 45 mg/10 g beans, respectively. There was a positive correlation between the sizes of the relevant microbial populations and the amounts of acids produced during fermentation.
    Matched MeSH terms: Lactic Acid
  8. Field AP, Gill N, Macadam P, Plews D
    Sports (Basel), 2019 Aug 01;7(8).
    PMID: 31375020 DOI: 10.3390/sports7080187
    The aim of this study was to determine the acute metabolic effects of different magnitudes of wearable resistance (WR) attached to the thigh during submaximal running. Twenty endurance-trained runners (40.8 ± 8.2 years, 1.77 ± 0.7 m, 75.4 ± 9.2 kg) completed six submaximal eight-minute running trials unloaded and with WRs of 1%, 2%, 3%, 4% and 5% body mass (BM), in a random order. The use of a WR resulted in a 1.6 ± 0.6% increase in oxygen consumption (VO2) for every 1% BM of additional load. Inferential based analysis found that the loading of ≥3% BM was needed to elicit any substantial responses in VO2, with an increase that was likely to be moderate in scale (effect size (ES) ± 90% confidential interval (CI): 0.24 ± 0.07). Using heart rate data, a training load score was extrapolated to quantify the amount of internal stress. For every 1% BM of WR, there is an extra 0.17 ± 0.06 estimated increase in training load. A WR ≥3% of BM was needed to elicit substantial responses in lactate production, with an increase which was very likely to be large in scale (ES ± 90% CI: 0.41 ± 0.18). A thigh-positioned WR provides a running-specific overload with loads ≥3% BM, resulting in substantial changes in metabolic responses.
    Matched MeSH terms: Lactic Acid
  9. Chai CY, Tan IS, Foo HCY, Lam MK, Tong KTX, Lee KT
    Bioresour Technol, 2021 Jun;330:124930.
    PMID: 33735730 DOI: 10.1016/j.biortech.2021.124930
    Managing plastic waste remains an urgent environmental concern and switching to biodegradable plastics can reduce the dependence on depleting fossil fuels. This study emphasises the efficacy of macroalgae wastes, Eucheuma denticulatum residues (EDRs), as potential alternate feedstock to produce l-lactic acid (l-LA), the monomer of polylactic acid, through fermentation. An innovative environmental friendly strategy was explored in this study to develop a glucose platform from EDRs: pretreatment with microwave-assisted autohydrolysis (MAA) applied to enhance enzymatic hydrolysis of EDRs. The results indicate that MAA pretreatment significantly increased the digestibility of EDRs during the enzymatic hydrolysis process. The optimum pretreatment conditions were 120 °C and 50 min, resulting in 96.5% of enzymatic digestibility after 48 h. The high l-LA yield of 98.6% was obtained using pretreated EDRs and supplemented with yeast extract. The energy analysis implies that MAA pretreatment could further improve the overall energy efficiency of the process.
    Matched MeSH terms: Lactic Acid
  10. Balakrishnan, Theenesh, Ahmad Hafiz Zulkifli, Munirah Sha'ban, Nurul Hafiza Mohd Jan, Mohd Zulfadzli Ibrahim, Noorhidayah Md Nazir
    MyJurnal
    The great potential of biodegradable polymers in orthopaedic surgery is
    gradually being recognized. PLGA is one of the common polymers used. However, long
    term outcomes, with regards to PLGA, are still not well documented. Hence, we
    attempted to study the outcome of PLGA and also its combination with fibrin. (Copied from article).
    Matched MeSH terms: Lactic Acid
  11. Sazali AL, AlMasoud N, Amran SK, Alomar TS, Pa'ee KF, El-Bahy ZM, et al.
    Chemosphere, 2023 Oct;338:139485.
    PMID: 37442394 DOI: 10.1016/j.chemosphere.2023.139485
    It is essential to investigate the physicochemical and thermal properties of choline chloride (ChCl)-based deep eutectic solvents (DESs) as hydrogen bond acceptor (HBA) with various hydrogen bond donor (HBD) functional groups, such as α-hydroxy acid (lactic acid) or polyol (glycerol). It is important to consider how molar ratios impact these properties, as they may be altered for particular applications. This study aimed to examine the physicochemical and thermal properties of ChCl-based DESs with lactic acid (LA) or glycerol (Gly) at different molar ratios (1:2-1:10). The pH of ChCl:LA (0-1.0) is lower than that of ChCl:Gly (4.0-5.0) because of the hydrogen bonds between ChCl and LA. A higher amount of LA/Gly resulted in higher densities of ChCl:Gly (1.20-1.22 g cm-3) and ChCl:LA (1.16-1.19 g cm-3) due to the stronger hydrogen bonds and tighter packing of the molecules. The refractive index of ChCl:Gly (1.47-1.48) was higher than ChCl:LA (1.44-1.46), with a trend similar to density. The viscosities of ChCl:Gly (0.235-0.453 Pa s) and ChCl:LA (0.04-0.06 Pa s) increased with increasing LA/Gly molar ratio but decreased with temperature due to the high kinetic energy from heating, lowering the attractive forces between molecules. The activation energy for ChCl:LA (15.29-15.55 kJ mol-1) is greater than for ChCl:Gly (7.77-8.78 kJ mol-1), indicating that ChCl:LA has a greater viscosity-temperature dependence than ChCl:Gly. The DESs decomposition temperatures are 179.73-192.14 °C for ChCl:LA and 189.69-197.41 °C for ChCl:Gly. Freezing temperatures are correlated with the molecular weight of HBDs, with lower values causing a larger decrease in freezing temperatures. The interactions of polyols with anions were stronger than those of α-hydroxy acids with anions. The variations in HBA to HBD molar ratios affected DESs properties, providing a fundamental understanding of the properties critical for their diverse applications.
    Matched MeSH terms: Lactic Acid
  12. Chieng BW, Ibrahim NA, Then YY, Loo YY
    Molecules, 2014;19(10):16024-38.
    PMID: 25299820 DOI: 10.3390/molecules191016024
    Plasticized poly(lactic acid) PLA with epoxidized vegetable oils (EVO) were prepared using a melt blending method to improve the ductility of PLA. The plasticization of the PLA with EVO lowers the Tg as well as cold-crystallization temperature. The tensile properties demonstrated that the addition of EVO to PLA led to an increase of elongation at break, but a decrease of tensile modulus. Plasticized PLA showed improvement in the elongation at break by 2058% and 4060% with the addition of 5 wt % epoxidized palm oil (EPO) and mixture of epoxidized palm oil and soybean oil (EPSO), respectively. An increase in the tensile strength was also observed in the plasticized PLA with 1 wt % EPO and EPSO. The use of EVO increases the mobility of the polymeric chains, thereby improving the flexibility and plastic deformation of PLA. The SEM micrograph of the plasticized PLA showed good compatible morphologies without voids resulting from good interfacial adhesion between PLA and EVO. Based on the results of this study, EVO may be used as an environmentally friendly plasticizer that can improve the overall properties of PLA.
    Matched MeSH terms: Lactic Acid/chemistry*
  13. Haafiz MK, Hassan A, Zakaria Z, Inuwa IM, Islam MS, Jawaid M
    Carbohydr Polym, 2013 Oct 15;98(1):139-45.
    PMID: 23987327 DOI: 10.1016/j.carbpol.2013.05.069
    In this work, polylactic acid (PLA) composites filled with microcrystalline cellulose (MCC) from oil palm biomass were successfully prepared through solution casting. Fourier transform infrared (FT-IR) spectroscopy indicates that there are no significant changes in the peak positions, suggesting that incorporation of MCC in PLA did not result in any significant change in chemical structure of PLA. Thermogravimetric analysis was conducted on the samples. The T50 decomposition temperature improved with addition of MCC, showing increase in thermal stability of the composites. The synthesized composites were characterized in terms of tensile properties. The Young's modulus increased by about 30%, while the tensile strength and elongation at break for composites decreased with addition of MCC. Scanning electron microscopy (SEM) of the composites fractured surface shows that the MCC remained as aggregates of crystalline cellulose. Atomic force microscopy (AFM) topographic image of the composite surfaces show clustering of MCC with uneven distribution.
    Matched MeSH terms: Lactic Acid/chemistry*
  14. Yusop AH, Daud NM, Nur H, Kadir MR, Hermawan H
    Sci Rep, 2015;5:11194.
    PMID: 26057073 DOI: 10.1038/srep11194
    Iron and its alloy have been proposed as biodegradable metals for temporary medical implants. However, the formation of iron oxide and iron phosphate on their surface slows down their degradation kinetics in both in vitro and in vivo scenarios. This work presents new approach to tailor degradation behavior of iron by incorporating biodegradable polymers into the metal. Porous pure iron (PPI) was vacuum infiltrated by poly(lactic-co-glycolic acid) (PLGA) to form fully dense PLGA-infiltrated porous iron (PIPI) and dip coated into the PLGA to form partially dense PLGA-coated porous iron (PCPI). Results showed that compressive strength and toughness of the PIPI and PCPI were higher compared to PPI. A strong interfacial interaction was developed between the PLGA layer and the iron surface. Degradation rate of PIPI and PCPI was higher than that of PPI due to the effect of PLGA hydrolysis. The fast degradation of PIPI did not affect the viability of human fibroblast cells. Finally, this work discusses a degradation mechanism for PIPI and the effect of PLGA incorporation in accelerating the degradation of iron.
    Matched MeSH terms: Lactic Acid/chemistry*
  15. Arjmandi R, Hassan A, Mohamad Haafiz MK, Zakaria Z
    Int J Biol Macromol, 2015 Nov;81:91-9.
    PMID: 26234577 DOI: 10.1016/j.ijbiomac.2015.07.062
    In this study, hybrid montmorillonite/cellulose nanowhiskers (MMT/CNW) reinforced polylactic acid (PLA) nanocomposites were produced through solution casting. The CNW filler was first isolated from microcrystalline cellulose by chemical swelling technique. The partial replacement of MMT with CNW in order to produce PLA/MMT/CNW hybrid nanocomposites was performed at 5 parts per hundred parts of polymer (phr) fillers content, based on highest tensile strength values as reported in our previous study. MMT were partially replaced with various amounts of CNW (1, 2, 3, 4 and 5phr). The tensile, thermal, morphological and biodegradability properties of PLA hybrid nanocomposites were investigated. The highest tensile strength of hybrid nanocomposites was obtained with the combination of 4phr MMT and 1phr CNW. Interestingly, the ductility of hybrid nanocomposites increased significantly by 79% at this formulation. The Young's modulus increased linearly with increasing CNW content. Thermogravimetric analysis illustrated that the partial replacement of MMT with CNW filler enhanced the thermal stability of the PLA. This is due to the relatively good dispersion of fillers in the hybrid nanocomposites samples as revealed by transmission electron microscopy. Interestingly, partial replacements of MMT with CNW improved the biodegradability of hybrid nanocomposites compared to PLA/MMT and neat PLA.
    Matched MeSH terms: Lactic Acid/chemistry*
  16. Kunasundari B, Arai T, Sudesh K, Hashim R, Sulaiman O, Stalin NJ, et al.
    Appl Biochem Biotechnol, 2017 Sep;183(1):412-425.
    PMID: 28361245 DOI: 10.1007/s12010-017-2454-z
    The availability of fermentable sugars in high concentrations in the sap of felled oil palm trunks and the thermophilic nature of the recently isolated Bacillus coagulans strain 191 were exploited for lactic acid production under non-sterile conditions. Screening indicated that strain 191 was active toward most sugars including sucrose, which is a major component of sap. Strain 191 catalyzed a moderate conversion of sap sugars to lactic acid (53%) with a productivity of 1.56 g/L/h. Pretreatment of oil palm sap (OPS) using alkaline precipitation improved the sugar fermentability, providing a lactic acid yield of 92% and productivity of 2.64 g/L/h. To better characterize potential inhibitors in the sap, phenolic, organic, and mineral compounds were analyzed using non-treated sap and saps treated with activated charcoal and alkaline precipitation. Phthalic acid, 3,4-dimethoxybenzoic acid, aconitic acid, syringic acid, and ferulic acid were reduced in the sap after treatment. High concentrations of Mg, P, K, and Ca were also precipitated by the alkaline treatment. These results suggest that elimination of excess phenolic and mineral compounds in OPS can improve the fermentation yield. OPS, a non-food resource that is readily available in bulk quantities from plantation sites, is a promising source for lactic acid production.
    Matched MeSH terms: Lactic Acid/biosynthesis*
  17. Nazrin A, Sapuan SM, Zuhri MYM
    Polymers (Basel), 2020 Sep 27;12(10).
    PMID: 32992514 DOI: 10.3390/polym12102216
    In this paper, sugar palm nanocellulose fibre-reinforced thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend bionanocomposites were prepared using melt blending and compression moulding with different TPS concentrations (20%, 30%, 40%, 60%, and 80%) and constant sugar palm nanocellulose fibres (0.5%). The physical, mechanical, thermal, and water barrier properties were investigated. The SEM images indicated different TPS loading effects with the morphology of the blend bionanocomposites due to their immiscibility. A high content of TPS led to agglomeration, while a lower content resulted in the presence of cracks and voids. The 20% TPS loading reduced the tensile strength from 49.08 to 19.45 MPa and flexural strength from 79.60 to 35.38 MPa. The thermal stability of the blend bionanocomposites was reduced as the TPS loading increased. The thickness swelling, which corresponded to the water absorption, demonstrated an increasing trend with the increased addition of TPS loading.
    Matched MeSH terms: Lactic Acid
  18. Yeoh, T.K., Cheah, Y.K., Davies, R.
    MyJurnal
    Mid-exponential phase Saccharomyces rouxii YSa40 cells subsequently stressed at low aw/pH in the 0.64 aw/pH 3.5 glycerol/CPB system became injured. Such injury was detected by the loss of ability of the
    stressed population to form colonies on secondary-stress plating medium (glycerol/BM agar at 0.94 aw
    /pH 3.5 (lactic acid)) while colony forming ability on secondary non-stress plating medium (sugars/BM agar at 0.94 aw/pH 3.5 (lactic) was unaffected. The injury was shown to be due to sensitivity to glycerol/lactic acid. Results of the present study will be useful for achieving complete decontamination of ‘Intermediate Moisture Foods’ against xerotolerant molds and yeast.
    Matched MeSH terms: Lactic Acid
  19. Abolhassani, Y, Khan, M.A., Salam, A.B, Ghasem, M.
    MyJurnal
    The effects of lactic acid bacteria (Lactobacillus plantarum and Lactobacillus bulgaricus) inoculation
    on the sensory attributes and consumers acceptance of fermented curry paste compared with uncultured sample were assessed. pH, titratable acidity (TA) and color changes, during four-month storage were monitored. Hedonic test was utilized to evaluate consumer perception and acceptability of fermented and ordinary curry pastes. Rapid pH drop was observed in inoculated sample with Lb. plantarum presenting better performance than the Lb. bulgaricus. Titratable acidity increased significantly (p0.05) in most of the attributes of
    original recipe and fermented curry paste except for color and sweetness. In summary, this study showed fermented curry paste with Lb. plantarum and Lb. bulgaricus exhibited new sensory attributes encouraging acceptability by consumers.
    Matched MeSH terms: Lactic Acid
  20. Zareian M, Ebrahimpour A, Bakar FA, Mohamed AK, Forghani B, Ab-Kadir MS, et al.
    Int J Mol Sci, 2012;13(5):5482-97.
    PMID: 22754309 DOI: 10.3390/ijms13055482
    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound.
    Matched MeSH terms: Lactic Acid/isolation & purification; Lactic Acid/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links