Displaying publications 1 - 20 of 46 in total

Abstract:
Sort:
  1. Majid AMA, Rahiman MHF, Wong TW
    Int J Pharm, 2021 Aug 10;605:120786.
    PMID: 34111546 DOI: 10.1016/j.ijpharm.2021.120786
    This study developed a tester where the powder flow was characterized using a low sample mass (2 g) and impact instead of dispersion mechanism to mitigate test space constraint. An impact chamber was established where the test powder bed of seven lactose grades was weight-impacted to produce impact crater and ejecta, and imaged quantitatively to determine crater profiling signature (crater depth), regional topography (ejecta roughness), Otsu threshold (bed continuity) and edge segmentation (bed deformation). The Hausner ratio (HR) and Carr's index (CI) values of lactose, and their powder dispersion distance and surface area characteristics evaluated by gas-pressurized dispersibility test were examined as reference method. The crater signature profiling and regional topography were correlated to HR, CI, dispersive distance and surface area. A poorer powder flow was characterized by higher values of crater signature profiling, regional topography, HR, CI, and lower dispersive distance and surface area. The crater signature profiling and regional topography values were higher with smaller and rougher lactose particles that were cohesive. The powder impact flow is a viable non-dispersive approach to characterize powder flowability using a small sample mass and test space.
    Matched MeSH terms: Lactose*
  2. Mazlee MTF, Heidelberg T, Ariffin A, Zain SM
    Carbohydr Res, 2023 Oct;532:108923.
    PMID: 37598565 DOI: 10.1016/j.carres.2023.108923
    In the attempt to create a delivery system for an alkali-cation stimulated drug release, a computational study was conducted, aiming for the evaluation of synthetic access towards glycolipid crown ethers analogs and their potential for coordination-induced changes of packing constraints for molecular assemblies. The results disfavor amide-linkages for the creation of macrocycles around the inter-glycosidic bond of a disaccharide. Conformational changes upon cation coordination of the macrocycle decrease the intersection area for easily accessible macrocycles based on lactose. This leads to shrinking intersection areas upon alkali complexation. Maltose-based analogs, on the other hand, exhibited the targeted increase of the glycolipid intersection area and, hence, may be considered as a promising resource.
    Matched MeSH terms: Lactose*
  3. Chen ST, Domala Z
    Asia Pac J Public Health, 1989;3(4):274-7.
    PMID: 2638907 DOI: 10.1177/101053958900300405
    1,256 malnourished children, aged seven to ten years, were selected for study, 575 from Kuala Langat, 416 from Wilayah Persekutuan and 265 from Ulu Selangor. Ninety-three percent of the children were from low socioeconomic groups with large family size, and most of their parents had only primary or no formal education. During the study period, children in Kuala Langat received daily milk supplementation for five days per week, those in Wilayah Persekutuan for two days per week, while those in Ulu Selangor did not receive any milk supplementation. The study shows that a majority of the malnourished primary school children liked to drink milk and that milk intolerance was not a problem among them.
    Matched MeSH terms: Lactose Intolerance/complications; Lactose Intolerance/epidemiology*
  4. Barling PM
    MyJurnal
    This review explores the digestibility of lactose by Malaysians, and the value of milk and other milk-derived products as sources of appropriate nutrition for Malaysians. Increased calcium intake through consumption of milk is an effective mechanism for increasing calcium uptake from the diet and thereby minimising the risk of development of osteoporosis in later life. Detailed information about rates of lactose intolerance, and adaptation to dietary lactose and its consequences for Malaysians, will help in the formulation of dietary advice, and improve commerial food manufaturing practice and Government policy
    directed to the minimization of rates of osteoporosis, which presents a substantial morbidity risk to elderly female Asians in particular.
    Matched MeSH terms: Lactose; Lactose Intolerance
  5. Veronica N, Heng PWS, Liew CV
    Mol Pharm, 2023 Feb 06;20(2):1072-1085.
    PMID: 36480246 DOI: 10.1021/acs.molpharmaceut.2c00812
    The stability of a moisture-sensitive drug in tablet formulations depends particularly on the environment's relative humidity (RH) and the products' prior exposure to moisture. This study was designed to understand drug stability in relation to the moisture interaction of the excipients, moisture history of the tablets, and RH of the environment. The stability study was performed on tablets containing acetylsalicylic acid (ASA), formulated with common pharmaceutical excipients like native maize starch, microcrystalline cellulose (MCC), partially pregelatinized maize starch (PGS), dicalcium phosphate dihydrate (DCP), lactose, and mannitol. The tablets were subjected to storage conditions with RH cycling alternating between 53% and 75%. Results were also compared to tablets stored at a constant RH of 53% or 75%. The excipients demonstrated marked differences in their interactions with moisture. They could be broadly grouped as excipients with RH-dependent moisture content (native maize starch, MCC, and PGS) and RH-independent moisture content (DCP, lactose, and mannitol). As each excipient interacted differently with moisture, degradation of ASA in the tablets depended on the excipients' ability to modulate the moisture availability for degradation. The lowest ASA degradation was observed in tablets formulated with low moisture content water-soluble excipients, such as lactose and mannitol. The impact of RH cycling on ASA stability was apparent in tablets containing native maize starch, MCC, PGS, or DCP. These findings suggested that the choice of excipients influences the effect of moisture history on drug stability. The results from studies investigating moisture interaction of excipients and drug stability are valuable to understanding the inter-relationship between excipients, moisture history, and drug stability.
    Matched MeSH terms: Lactose*
  6. Hayashi Y, Shirotori K, Kosugi A, Kumada S, Leong KH, Okada K, et al.
    Pharmaceutics, 2020 Jun 28;12(7).
    PMID: 32605318 DOI: 10.3390/pharmaceutics12070601
    We previously reported a novel method for the precise prediction of tablet properties (e.g., tensile strength (TS)) using a small number of experimental data. The key technique of this method is to compensate for the lack of experimental data by using data of placebo tablets collected in a database. This study provides further technical knowledge to discuss the usefulness of this prediction method. Placebo tablets consisting of microcrystalline cellulose, lactose, and cornstarch were prepared using the design of an experimental method, and their TS and disintegration time (DT) were measured. The response surfaces representing the relationship between the formulation and the tablet properties were then created. This study investigated tablets containing four different active pharmaceutical ingredients (APIs) with a drug load ranging from 20-60%. Overall, the TS of API-containing tablets could be precisely predicted by this method, while the prediction accuracy of the DT was much lower than that of the TS. These results suggested that the mode of action of APIs on the DT was more complicated than that on the TS. Our prediction method could be valuable for the development of tablet formulations.
    Matched MeSH terms: Lactose
  7. Kazemi Shariat Panahi H, Dehhaghi M, Amiri H, Guillemin GJ, Gupta VK, Rajaei A, et al.
    Biotechnol Adv, 2023 Sep;66:108172.
    PMID: 37169103 DOI: 10.1016/j.biotechadv.2023.108172
    Chitin, as the main component of the exoskeleton of Arthropoda, is a highly available natural polymer that can be processed into various value-added products. Its most important derivative, i.e., chitosan, comprising β-1,4-linked 2-amino-2-deoxy-β-d-glucose (deacetylated d-glucosamine) and N-acetyl-d-glucosamine units, can be prepared via alkaline deacetylation process. Chitosan has been used as a biodegradable, biocompatible, non-antigenic, and nontoxic polymer in some in-vitro applications, but the recently found potentials of chitosan for in-vivo applications based on its biological activities, especially antimicrobial, antioxidant, and anticancer activities, have upgraded the chitosan roles in biomaterials. Chitosan approval, generally recognized as a safe compound by the United States Food and Drug Administration, has attracted much attention toward its possible applications in diverse fields, especially biomedicine and agriculture. Despite some favorable characteristics, the chitosan's structure should be customized for advanced applications, especially due to its drawbacks, such as low drug-load capacity, low solubility, high viscosity, lack of elastic properties, and pH sensitivity. In this context, derivatization with relatively inexpensive and highly available mono- and di-saccharides to soluble branched chitosan has been considered a "game changer". This review critically scrutinizes the emerging technologies based on the synthesis and application of lactose- and galactose-modified chitosan as two important chitosan derivatives. Some characteristics of chitosan derivatives and biological activities have been detailed first to understand the value of these natural polymers. Second, the saccharide modification of chitosan has been discussed briefly. Finally, the applications of lactose- and galactose-modified chitosan have been scrutinized and compared to native chitosan to provide an insight into the current state-of-the research for stimulating new ideas with the potential of filling research gaps.
    Matched MeSH terms: Galactose; Lactose
  8. Goh LH, Mohd Said R, Goh KL
    JGH Open, 2018 Dec;2(6):307-310.
    PMID: 30619942 DOI: 10.1002/jgh3.12089
    Background and Aims: There have been few reports on lactase deficiency (LD) and lactose intolerance (LI) in Malaysia, which has a peculiar mix of three distinct major Asian races-Malay, Chinese, and Indian. The aim of this study was to determine the prevalence of LD and LI in a young multiethnic Malaysian population.

    Methods: Lactase activity was measured with a 13CO2 lactose breath test using an infrared spectrometer. Each subject took 25 g of lactose naturally enriched in 13CO2 together with 250 mL of water after an overnight fast. Breath samples were collected at baseline and at 15-min intervals for 180 min. Subjects were asked to report gastrointestinal (GI) symptoms following ingestion of the lactose test meal.

    Results: Of the 248 subjects tested, 216 (87.1%) were lactase deficient. We found no significant differences in the presentation of LD between gender and races. LD was found in 87.5% of males and 86.8% of females (P = 0.975) and in different races: Chinese (88.5%) versus Malay (83.1%) (P = 0.399), Indian (90.5%) versus Malay (P = 0.295), and Chinese versus Indian (P = 0.902). LI was diagnosed in only 49 (19.8%) subjects; 35 patients had diarrhea, while the remainder had at least two other GI symptoms after the lactose meal.

    Conclusion: The prevalence of LD was high in all three major ethnic groups-Malays, Chinese, and Indians. Ironically, the prevalence of LI was low overall.

    Matched MeSH terms: Lactose; Lactose Intolerance
  9. Gong QQ, Tay JYS, Veronica N, Xu J, Heng PWS, Zhang YP, et al.
    Pharm Dev Technol, 2023 Feb;28(2):164-175.
    PMID: 36683577 DOI: 10.1080/10837450.2023.2171434
    Surface roughness of carrier particles can impact dry powder inhaler (DPI) performance. There are opposing views on the effect of roughness on DPI performance. Hence, a systematic approach is needed to modify carrier surfaces and evaluate the impact on drug delivery. Carrier particle surfaces were modified by fluid bed coating with saturated lactose containing micronized lactose of different sizes (2, 5 and 8 μm) and coated to different levels (20, 40, 60 and 80%). Their drug delivery performance was assessed by the fine particle fraction (FPF). Roughness parameters, mean arithmetic roughness (Ra) and arithmetic mean height (Sa), of the carrier particles, were also evaluated using optical profilometry and scanning laser microscopy. Generally, particles of higher Ra had higher FPF. Higher Sa resulted in higher FPF only for particles with 60 and 80% coat levels. Reduced contact surface area between the drug particle and rougher carrier particle resulted in easier drug detachment during aerosolization. The 5 µm micronized lactose produced optimal carrier particles with respect to FPF and surface roughness. The study highlighted that with the ideal particles for surface roughening and coating level, surface roughening could be efficiently achieved by fluid bed coating for superior DPI performance.
    Matched MeSH terms: Lactose*
  10. Iyngkaran N, Yadav M, Boey CG, Lam KL
    Arch Dis Child, 1988 Aug;63(8):911-5.
    PMID: 3415326
    The clinical response and the histological changes in the mucosa of the small bowel in response to continued feeding with cows' milk protein were assessed over a period of 2-6 weeks in 24 infants who had shown histological changes without immediate clinical symptoms after challenge with a diet containing cows' milk protein. Twenty of the 24 infants (83%) thrived well on cows' milk protein. Jejunal biopsy specimens taken six to eight weeks after the initial biopsy showed histological improvement in all 20 infants compared with biopsy specimens taken soon after the challenge, which had shown mucosal damage. The mucosa had returned to normal in 12, was mildly abnormal in seven, and moderately abnormal in one. Corresponding improvements in the activities of mucosal enzymes were seen. In four of the 24 infants (17%) symptoms developed between three and six weeks. Histological examination of the jejunal biopsy specimens showed that mucosal damage had progressed in two, and remained the same in two; moreover, the disaccharidase activities remained depressed. The present study shows that most infants with enteropathy caused by sensitivity to cows' milk protein but without clinical symptoms develop tolerance to the protein and the mucosa returns to normal despite continued feeding with cows' milk protein.
    Matched MeSH terms: Lactose Intolerance/complications; Lactose Intolerance/pathology*
  11. Asmawi MZ, Seppo L, Vapaatalo H, Korpela R
    Indian J Med Res, 2006 Dec;124(6):697-704.
    PMID: 17287558
    Prevalence of adult-type hypolactasia is known to vary among different countries and in different ethnic populations in the same country. The present study was undertaken to evaluate the prevalence of hypolactasia and lactose intolerance in three different ethnic populations living in similar environmental conditions in Malaysia. The correlation between different symptoms and lactose intolerance test was also studied.
    Matched MeSH terms: Lactose Intolerance/ethnology; Lactose Intolerance/epidemiology*
  12. Peh KK, Wong CF
    Drug Dev Ind Pharm, 2000 Jul;26(7):723-30.
    PMID: 10872090
    Controlled-release grade hydroxypropylmethylcellulose (HPMC) or xanthan gum (XG) and microcrystalline cellulose (MCC) were employed to prepare controlled-release diltiazem hydrochloride tablets. The similarity factor f2 was used for dissolution profile comparison using Herbesser 90 SR as a reference product. Drug release could be sustained in a predictable manner by modifying the content of HPMC or XG. Moreover, the drug release profiles of tablets prepared using these matrix materials were not affected by pH and agitation rate. The f2 values showed that only one batch of tablets (of diltiazem HCl, HPMC or XG, and MCC in proportions of 3.0:3.0:4.0) was considered similar to that of the reference product, with values above 50. The unbiased similarity factor f2* values were not much different from the f2 values, ascribing to a small dissolution variance of the test and reference products. The amount of HPMC or XG incorporated to produce tablets with the desired dissolution profile could be determined from the curves of f2 versus polymer content. Hence, the f2 values can be applied as screening and optimization tools during development of controlled-release preparations.
    Matched MeSH terms: Lactose/analogs & derivatives; Lactose/chemistry
  13. Tamilvanan S, Karmegam S
    Pharm Dev Technol, 2012 Jul-Aug;17(4):494-501.
    PMID: 21609308 DOI: 10.3109/10837450.2010.550622
    Methyl salicylate-lactose physical mixture (1:1 and 1:1.5 ratios) was incorporated into calcium alginate beads by a coacervation method involving an ionotropic gelation/polyelectrolyte complexation approach.
    Matched MeSH terms: Lactose/administration & dosage
  14. Yeow ST, Shahar A, Abdul Aziz N, Anuar MS, Yusof YA, Taip FS
    Drug Des Devel Ther, 2011;5:465-9.
    PMID: 22162640 DOI: 10.2147/DDDT.S25047
    To investigate the effect of feed preparation characteristics and operational parameters on mixing homogeneity in a convective batch ribbon mixer.
    Matched MeSH terms: Lactose/chemistry
  15. Tan YT, Heng PW, Wan LS
    Pharm Dev Technol, 1999;4(4):561-70.
    PMID: 10578511
    Modified-release drug spheroids coated with an aqueous mixture of high-viscosity hydroxypropylmethylcellulose (HPMC) and sodium carboxymethylcellulose (NaCMC) were formulated. The preparation of core drug spheroids and the coating procedures were performed using the rotary processor and a bottom-spray fluidized bed, respectively. Dissolution studies indicated that incorporation of suitable additives, such as poly(vinylpyrrolidone) (PVP) and poly(ethylene glycol) 400 (PEG) improved the flexibility and integrity of the coat layer by retarding the drug release. An increase in coating levels applied generally retarded the release rate of the drug. However, the ratio of HPMC to NaCMC in the mixed, plasticized polymeric coat played a more dominant role in determining the dissolution T50% values. The optimal ratio of HPMC to NaCMC for prolonged drug release was found to be 3:1, whereas an increase in the amount of NaCMC in the mixed polymer coat only increased drug release. The synergistic viscosity effect of HPMC and NaCMC in retarding drug release rate was greater in distilled water than in dissolution media of pH 1 and 7.2. Cross-sectional view of the scanning electron micrograph showed that all of the coated spheroids exhibited a well-fused, continuous, and distinct layer of coating film. The drug release kinetics followed a biexponential first-order kinetic model.
    Matched MeSH terms: Lactose/analogs & derivatives*
  16. Meon R
    J Clin Pediatr Dent, 1991;16(1):10-2.
    PMID: 1815737
    An unusual presentation of rampant caries in a child was described. Lactose from bovine milk, bad feeding habits and poor oral hygiene appear to play a major role in its aetiology.
    Matched MeSH terms: Lactose/adverse effects
  17. Abd Rahim MH, Lim EJ, Hasan H, Abbas A
    J Microbiol Methods, 2019 09;164:105672.
    PMID: 31326443 DOI: 10.1016/j.mimet.2019.105672
    PURPOSE: This study aimed to assess the effect of nitrogen, salt and pre-culture conditions on the production of lovastatin in A. terreus ATCC 20542.

    METHODS: Different combinations of nitrogen sources, salts and pre-culture combinations were applied in the fermentation media and lovastatin yield was analysed chromatographically.

    RESULT: The exclusion of MnSO4 ·5H2O, CuSO4·5H2O and FeCl3·6H2O were shown to significantly improve lovastatin production (282%), while KH2PO4, MgSO4·7H2O, and NaCl and ZnSO4·7H2O were indispensable for good lovastatin production. Simple nitrogen source (ammonia) was unfavourable for morphology, growth and lovastatin production. In contrast, yeast extract (complex nitrogen source) produced the highest lovastatin yield (25.52 mg/L), while powdered soybean favoured the production of co-metabolites ((+)-geodin and sulochrin). Intermediate lactose: yeast extract (5:4) ratio produced the optimal lovastatin yield (12.33 mg/L) during pre-culture, while high (5:2) or low (5:6) lactose to yeast extract ratio produced significantly lower lovastatin yield (7.98 mg/L and 9.12 mg/L, respectively). High spore concentration, up to 107 spores/L was shown to be beneficial for lovastatin, but not for co-metabolite production, while higher spore age was shown to be beneficial for all of its metabolites.

    CONCLUSION: The findings from these investigations could be used for future cultivation of A. terreus in the production of desired metabolites.

    Matched MeSH terms: Lactose/metabolism
  18. Hasan H, Abd Rahim MH, Campbell L, Carter D, Abbas A, Montoya A
    N Biotechnol, 2019 Sep 25;52:19-24.
    PMID: 30995533 DOI: 10.1016/j.nbt.2019.04.003
    Lovastatin is widely prescribed to reduce elevated levels of cholesterol and prevent heart-related diseases. Cultivation of Aspergillus terreus (ATCC 20542) with carbohydrates or low-value feedstocks such as glycerol produces lovastatin as a secondary metabolite and (+)-geodin as a by-product. An A. terreus mutant strain was developed (gedCΔ) with a disrupted (+)-geodin biosynthesis pathway. The gedCΔ mutant was created by inserting the antibiotic marker hygromycin B (hyg) within the gedC gene that encodes emodin anthrone polyketide synthase (PKS), a primary gene responsible for initiating (+)-geodin biosynthesis. The effects of emodin anthrone PKS gene disruption on (+)-geodin and lovastatin biosynthesis and the production of the precursors acetyl-CoA and malonyl-CoA were investigated with cultures based on glycerol alone and in combination with lactose. The gedCΔ strain showed improved lovastatin production, particularly when cultivated on the glycerol-lactose mixture, increasing lovastatin production by 80% (113 mg/L) while simultaneously inhibiting (+)-geodin biosynthesis compared to the wild-type strain. This study thus shows that suppression of the (+)-geodin pathway increases lovastatin yield and demonstrates a practical approach of manipulating carbon flux by modulating enzyme activity.
    Matched MeSH terms: Lactose/metabolism
  19. Misson M, Du X, Jin B, Zhang H
    Enzyme Microb Technol, 2016 Mar;84:68-77.
    PMID: 26827776 DOI: 10.1016/j.enzmictec.2015.12.008
    Functional nanomaterials have been pursued to assemble nanobiocatalysts since they can provide unique hierarchical nanostructures and localized nanoenvironments for enhancing enzyme specificity, stability and selectivity. Functionalized dendrimer-like hierarchically porous silica nanoparticles (HPSNs) was fabricated for assembling β-galactosidase nanobiocatalysts for bioconversion of lactose to galacto-oligosaccharides (GOS). The nanocarrier was functionalized with amino (NH2) and carboxyl (COOH) groups to facilitate enzyme binding, benchmarking with non-functionalized HPSNs. Successful conjugation of the functional groups was confirmed by FTIR, TGA and zeta potential analysis. HPSNs-NH2 showed 1.8-fold and 1.1-fold higher β-galactosidase adsorption than HPSNs-COOH and HPSNs carriers, respectively, with the highest enzyme adsorption capacity of 328mg/g nanocarrier at an initial enzyme concentration of 8mg/ml. The HPSNs-NH2 and β-galactosidase assembly (HPSNs-NH2-Gal) demonstrated to maintain the highest activity at all tested enzyme concentrations and exhibited activity up to 10 continuous cycles. Importantly, HPSNs-NH2-Gal was simply recycled through centrifugation, overcoming the challenging problems of separating the nanocarrier from the reaction medium. HPSNs-NH2-Gal had distinguished catalytic reaction profiles by favoring transgalactosylation, enhancing GOS production of up to 122g/l in comparison with 56g/l by free β-galactosidase. Furthermore, it generated up to 46g/l GOS at a lower initial lactose concentration while the free counterpart had negligible GOS production as hydrolysis was overwhelmingly dominant in the reaction system. Our research findings show the amino-functionalized HPSNs can selectively promote the enzyme activity of β-galactosidase for transgalactosylation, which is beneficial for GOS production.
    Matched MeSH terms: Lactose/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links