Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Swamy SG, Kameshwar VH, Shubha PB, Looi CY, Shanmugam MK, Arfuso F, et al.
    Target Oncol, 2017 02;12(1):1-10.
    PMID: 27510230 DOI: 10.1007/s11523-016-0452-7
    Hepatocellular carcinoma (HCC) is one of the most common forms of liver cancer diagnosed worldwide. HCC occurs due to chronic liver disease and is often diagnosed at advanced stages. Chemotherapeutic agents such as doxorubicin are currently used as first-line agents for HCC therapy, but these are non-selective cytotoxic molecules with significant side effects. Sorafenib, a multi-targeted tyrosine kinase inhibitor, is the only approved targeted drug for HCC patients. However, due to adverse side effects and limited efficacy, there is a need for the identification of novel pharmacological drugs beyond sorafenib. Several agents that target and inhibit various signaling pathways involved in HCC are currently being assessed for HCC treatment. In the present review article, we summarize the diverse signal transduction pathways responsible for initiation as well as progression of HCC and also the potential anticancer effects of selected targeted therapies that can be employed for HCC therapy.
    Matched MeSH terms: Liver Neoplasms/drug therapy*
  2. Zakaria KN, Amid A, Zakaria Z, Jamal P, Ismail A
    Asian Pac J Cancer Prev, 2019 Feb 26;20(2):563-567.
    PMID: 30803221
    Problem statement: Clinicanthus nutans has been used by Malaysian since long time ago. It is used to treat many diseases including cancer. Many studies carried out on its crude extract but no clear report on the specific secondary metabolites responsible for its nature in treating selected diseases. Objective: This study aims to confirm the practice carried out by many people on the usage of Clinicanthus nutans in treating cancer. Methods: C. nutans leaves were extracted by methanol. Thin layer chromatography was used to identify the suitable solvent for fractions separation. The fractions were then separated at larger volume using gravity column chromatography. Each fraction was tested on its anti-proliferative activity on Hep-G2 liver cancer cells by MTT assay. The phytochemical screening was carried out to identify the bioactive compound based on qualitative analysis. Results: The fraction 2 (F2) of C. nutans showed the lowest IC50 value of 1.73 μg/ml against Hep-G2 cancer cells, and it is identified as triterpenes. Conclusion: The fraction F2 identified as triterpenes isolated from C. nutans has potential as an anti-proliferative agent against liver cancer.
    Matched MeSH terms: Liver Neoplasms/drug therapy*
  3. Hussin F, Eshkoor SA, Rahmat A, Othman F, Akim A
    BMC Complement Altern Med, 2014 Jan 20;14:32.
    PMID: 24444147 DOI: 10.1186/1472-6882-14-32
    BACKGROUND: This paper is to investigate the effects of Centella asiatica on HepG2 (human hepatocellular liver carcinoma cell line). Centella asiatica is native to the Southeast Asia that is used as a traditional medicine. This study aims to determine the chemopreventive effects of the Centella asiatica juice on human HepG2 cell line.

    METHODS: Different methods including flow cytometry, comet assay and reverse transcription-polymerase chain reaction (RT-PCR) were used to show the effects of juice exposure on the level of DNA damage and the reduction of cancerous cells. MTT assay is a colorimetric method applied to measure the toxic effects of juice on cells.

    RESULTS: The Centella asiatica juice was not toxic to normal cells. It showed cytotoxic effects on tumor cells in a dose dependent manner. Apoptosis in cells was started after being exposed for 72 hr of dose dependent. It was found that the higher percentage of apoptotic cell death and DNA damage was at the concentration above 0.1%. In addition, the juice exposure caused the reduction of c-myc gene expression and the enhancement of c-fos and c-erbB2 gene expressions in tumor cells.

    CONCLUSIONS: It was concluded that the Centella asiatica juice reduced liver tumor cells. Thus, it has the potential to be used as a chemopreventive agent to prevent and treat liver cancer.

    Matched MeSH terms: Liver Neoplasms/drug therapy*
  4. Katiman D, Manikam J, Goh KL, Abdullah BJ, Mahadeva S
    J Gastrointest Cancer, 2012 Sep;43 Suppl 1:S187-90.
    PMID: 22692948 DOI: 10.1007/s12029-012-9373-6
    Matched MeSH terms: Liver Neoplasms/drug therapy*
  5. Abdull Razis AF, Noor NM
    Asian Pac J Cancer Prev, 2013;14(7):4235-8.
    PMID: 23991982
    Glucoraphanin is the main glucosinolate found in broccoli and other cruciferous vegetables (Brassicaceae). The objective of the study was to evaluate whether glucoraphanin and its breakdown product sulforaphane, are potent modulators of various phase I and phase II enzymes involved in carcinogen-metabolising enzyme systems in vitro. The glucosinolate glucoraphanin was isolated from cruciferous vegetables and exposed to human hepatoma cell line HepG2 at various concentrations (0-25 μM) for 24 hours. Glucoraphanin at higher concentration (25 μM) decreased dealkylation of methoxyresorufin, a marker for cytochrome P4501 activity; supplementation of the incubation medium with myrosinase (0.018 U), the enzyme that converts glucosinolate to its corresponding isothiocyanate, showed minimal induction in this enzyme activity at concentration 10 μM. Quinone reductase and glutathione S-transferase activities were unaffected by this glucosinolate; however, supplementation of the incubation medium with myrosinase elevated quinone reductase activity. It may be inferred that the breakdown product of glucoraphanin, in this case sulforaphane, is superior than its precursor in modulating carcinogen- metabolising enzyme systems in vitro and this is likely to impact on the chemopreventive activity linked to cruciferous vegetable consumption.
    Matched MeSH terms: Liver Neoplasms/drug therapy
  6. Ng CX, Lee SH
    Curr Cancer Drug Targets, 2020;20(3):187-196.
    PMID: 31713495 DOI: 10.2174/1568009619666191111141032
    Peptides have acquired increasing interest as promising therapeutics, particularly as anticancer alternatives during recent years. They have been reported to demonstrate incredible anticancer potentials due to their low manufacturing cost, ease of synthesis and great specificity and selectivity. Hepatocellular carcinoma (HCC) is among the leading cause of cancer death globally, and the effectiveness of current liver treatment has turned out to be a critical issue in treating the disease efficiently. Hence, new interventions are being explored for the treatment of hepatocellular carcinoma. Anticancer peptides (ACPs) were first identified as part of the innate immune system of living organisms, demonstrating promising activity against infectious diseases. Differentiated beyond the traditional effort on endogenous human peptides, the discovery of peptide drugs has evolved to rely more on isolation from other natural sources or through the medicinal chemistry approach. Up to the present time, the pharmaceutical industry intends to conduct more clinical trials for the development of peptides as alternative therapy since peptides possess numerous advantages such as high selectivity and efficacy against cancers over normal tissues, as well as a broad spectrum of anticancer activity. In this review, we present an overview of the literature concerning peptide's physicochemical properties and describe the contemporary status of several anticancer peptides currently engaged in clinical trials for the treatment of hepatocellular carcinoma.
    Matched MeSH terms: Liver Neoplasms/drug therapy*
  7. Bhullar M, Bhullar A, Arachchi NJ
    Ann Acad Med Singap, 2016 Oct;45(10):479-480.
    PMID: 27832225
    Matched MeSH terms: Liver Neoplasms/drug therapy*
  8. Anasamy T, Chee CF, Kiew LV, Chung LY
    Eur J Pharm Sci, 2020 Jan 15;142:105140.
    PMID: 31704345 DOI: 10.1016/j.ejps.2019.105140
    This study reports the in vivo performance of two tribenzyltin carboxylate complexes, tri(4-fluorobenzyl)tin[(N,N-diisopropylcarbamothioyl)sulfanyl]acetate (C1) and tribenzyltin isonicotinate (C9), in their native form as well as in a poly(lactic-co-glycolic acid) (PLGA)-based nanoformulation, to assess their potential to be translated into clinically useful agents. In a 4T1 murine metastatic mammary tumour model, single intravenous administration of C1 (2.7 mg/kg) and C9 (2.1 mg/kg; 2.1 mg/kg C9 is equivalent to 2.7 mg/kg C1) induced greater tumour growth delay than cisplatin and doxorubicin at equivalent doses, while a double-dose regimen demonstrated a much greater tumour growth delay than the single-dose treated groups. To improve the efficacy of the complexes in vivo, C1 and C9 were further integrated into PLGA nanoparticles to yield nanosized PLGA-C1 (183.7 ± 0.8 nm) and PLGA-C9 (163.2 ± 1.2 nm), respectively. Single intravenous administration of PLGA-C1 (2.7 mg C1 equivalent/kg) and PLGA-C9 (2.1 mg C9 equivalent/kg) induced greater tumour growth delay (33% reduction in the area under curve compared to that of free C1 and C9). Multiple-dose administration of PLGA-C1 (5.4 mg C1 equivalent/kg) and PLGA-C9 (4.2 mg C9 equivalent/kg) induced tumour growth suppression at the end of the study (21.7 and 34.6% reduction relative to the size on day 1 for the double-dose regimen; 73.5 and 79.0% reduction relative to the size on day 1 for the triple-dose regimen, respectively). Such tumour growth suppression was not observed in mice receiving multiple-dose regimens of free C1 and C9. Histopathological analysis revealed that metastasis to the lung and liver was inhibited in mice receiving PLGA-C1 and PLGA-C9. The current study has demonstrated the improved in vivo antitumour efficacies of C1 and C9 compared with conventional chemotherapy drugs and the enhancement of the efficacies of these agents via a robust PLGA-based nanoformulation and multiple-drug administration approach.
    Matched MeSH terms: Liver Neoplasms/drug therapy
  9. Ruman U, Fakurazi S, Masarudin MJ, Hussein MZ
    Int J Nanomedicine, 2020;15:1437-1456.
    PMID: 32184597 DOI: 10.2147/IJN.S236927
    The development of therapeutics and theranostic nanodrug delivery systems have posed a challenging task for the current researchers due to the requirement of having various nanocarriers and active agents for better therapy, imaging, and controlled release of drugs efficiently in one platform. The conventional liver cancer chemotherapy has many negative effects such as multiple drug resistance (MDR), high clearance rate, severe side effects, unwanted drug distribution to the specific site of liver cancer and low concentration of drug that finally reaches liver cancer cells. Therefore, it is necessary to develop novel strategies and novel nanocarriers that will carry the drug molecules specific to the affected cancerous hepatocytes in an adequate amount and duration within the therapeutic window. Therapeutics and theranostic systems have advantages over conventional chemotherapy due to the high efficacy of drug loading or drug encapsulation efficiency, high cellular uptake, high drug release, and minimum side effects. These nanocarriers possess high drug accumulation in the tumor area while minimizing toxic effects on healthy tissues. This review focuses on the current research on nanocarrier-based therapeutics and theranostic drug delivery systems excluding the negative consequences of nanotechnology in the field of drug delivery systems. However, clinical developments of theranostics nanocarriers for liver cancer are considered outside of the scope of this article. This review discusses only the recent developments of nanocarrier-based drug delivery systems for liver cancer therapy and diagnosis. The negative consequences of individual nanocarrier in the drug delivery system will also not be covered in this review.
    Matched MeSH terms: Liver Neoplasms/drug therapy*
  10. Chaudhry GE, Sohimi NKA, Mohamad H, Zafar MN, Ahmed A, Sung YY, et al.
    Asian Pac J Cancer Prev, 2021 Feb 01;22(S1):17-24.
    PMID: 33576208 DOI: 10.31557/APJCP.2021.22.S1.17
    OBJECTIVE: Liver cancer is one of the most common causes of cancer death, with reduced survival rates. The development of new chemotherapeutic agents is essential to find effective cytotoxic drugs that give minimum side effects to the surrounding healthy tissues. The main objective of the present study was to evaluate the cytotoxic effects and mechanism of cell death induced by the crude and diethyl ether extract of Xylocarpus mouccensis on the human hepatocellular carcinoma cell line.

    METHODS: The cytotoxicity activity was measured using the MTS assay. The mode of cell death determined by the apoptosis study, DNA fragmentation analysis done by using the TUNEL system. The pathway study or mechanism of apoptosis observed by study caspases 8, 9, 3/7 Glo-caspases method.

    RESULTS: In this study, the methanol extracts prepared from leaf Xylocarpus mouccensis leaf produced cytotoxicity effect with IC50 (72hr) < 30µg/ml. The IC50 value at 72 hours exerted by diethyl ether extract of Xylocarpus moluccensis leaf was 0.22 µg/ml, which was more cytotoxic than to that of crude methanol extract. The results obtained by the colorimetric TUNEL system suggest that methanol crude extract of Xylocarpus moluccensis (leaf), diethyl ether extract of Xylocarpus moluccensis (leaf) and methanol extract of Xylocarpus granatum (bark) induced DNA fragmentation in the HepG2 cell line. Besides, the caspase-Glo assay demonstrated that diethyl ether leaf extract of Xylocarpus moluccensis triggered apoptotic cell death via activation of caspases -8, and -3/7 However, no visible activation was noticed for caspase -9. Furthermore, TLC indicates the presence of potential metabolites in an extract of Xylocarpus moluccensis.

    CONCLUSION: Thus, the present study suggests the remarkable potential of active metabolites in the extract of Xylocarpus moluccensis as a future therapeutic agent for the treatment of cancer.
    .

    Matched MeSH terms: Liver Neoplasms/drug therapy
  11. Kadir FA, Kassim NM, Abdulla MA, Yehye WA
    PMID: 24305067 DOI: 10.1186/1472-6882-13-343
    Hepatocellular carcinoma is a common type of tumour worldwide with a high mortality rate and with low response to current cytotoxic and chemotherapeutic drugs. The prediction of activity spectra for the substances (PASS) software, which predicted that more than 300 pharmacological effects, biological and biochemical mechanisms based on the structural formula of the substance was efficiently used in this study to reveal new multitalented actions for Vitex negundo (VN) constituents.
    Matched MeSH terms: Liver Neoplasms/drug therapy*
  12. Hussein Al Ali SH, Al-Qubaisi M, Hussein MZ, Zainal Z, Hakim MN
    Int J Nanomedicine, 2011;6:3099-111.
    PMID: 22163163 DOI: 10.2147/IJN.S24510
    A new simple preparation method for a hippurate-intercalated zinc-layered hydroxide (ZLH) nanohybrid has been established, which does not need an anion-exchange procedure to intercalate the hippurate anion into ZLH interlayers.
    Matched MeSH terms: Liver Neoplasms/drug therapy
  13. Hussin F, Eshkoor SA, Rahmat A, Othman F, Akim A, Eshak Z
    Asian Pac J Cancer Prev, 2015;16(14):6047-53.
    PMID: 26320494
    BACKGROUND: Hepatocellular carcinoma is one of the most common cancers worldwide. Its prevalence is increasing in many countries. Plant products can be used to protect against cancer due to natural anticancer and chemopreventive constituents. Strobilanthes crispus is one of plants with potential chemopreventive ability.

    OBJECTIVE: This study aimed to evaluate the anticancer effects of Strobilanthes crispus juice on hepatocellular carcinoma cells.

    MATERIALS AND METHODS: MTT assays, flow cytometry, comet assays and the reverse transcription- polymerase chain reaction (RT-PCR) were used to determine the effects of juice on DNA damage and cancer cell numbers.

    RESULTS: This juice induced apoptosis after exposure of the HepG2 cell line for 72 h. High percentages of apoptotic cell death and DNA damage were seen at the juice concentrations above 0.1%. It was found that the juice was not toxic for normal cells. In addition, juice exposure increased the expression level of c-myc gene and reduced the expression level of c-fos and c-erbB2 genes in HepG2 cells. The cytotoxic effects of juice on abnormal cells were in dose dependent.

    CONCLUSIONS: It was concluded that the Strobilanthes crispus juice may have chemopreventive effects on hepatocellular carcinoma cells.

    Matched MeSH terms: Liver Neoplasms/drug therapy
  14. Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, et al.
    Parasitol Int, 2016 Jun;65(3):276-84.
    PMID: 26873539 DOI: 10.1016/j.parint.2016.02.003
    The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW-AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW-AgNP showed plasmon resonance reduction in UV-vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW-AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW-AgNP were toxic to Anopheles stephensi larvae and pupae, LC(50) were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW-AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW-AgNP IC(50) were 49.3 μg/ml (CQ-s) and 55.5 μg/ml (CQ-r), while chloroquine IC(50) were 81.5 μg/ml (CQ-s) and 86.5 μg/ml (CQ-r). EW-AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW-AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW-AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW-AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies.
    Matched MeSH terms: Liver Neoplasms/drug therapy*
  15. Joishy SK, Bennett JM, Balasegaram M, MacIntyre JM, Falkson G, Moertel C, et al.
    Cancer, 1982 Sep 15;50(6):1065-9.
    PMID: 6286085
    Twenty Malaysian patients with unresectable primary liver cell cancer were prospectively studied at the General Hospital, Kuala Lampur, and were compared for clinical features with an equal number each of African and American patients being studied by the Eastern Cooperative Oncology Group. The patients received intravenous 5-FU and oral MeCCNU which was used for the first time in an Asian country. Most of the Malaysian patients were Chinese, belonged to younger age groups, and presented with massive hepatomegaly, jaundice, and fever. Toxicity to MeCCNU invariably occurred in the form of leukopenia or thrombocytopenia, but none life threatening. Partial response was seen in 20% of Malaysians as compared to 16% in Americans and none in Africans. Malaysians achieved a median survival of 16 weeks compared to 28 weeks in Americans and only eight weeks in Africans. Malaysian Chinese patients were all HBc Ab + ve. Other factors which may have played an etiologic role in the induction of primary liver cancer included alcohol, Chinese herbal medicines, aflatoxin and habitual use of medicated rubbing oils.
    Matched MeSH terms: Liver Neoplasms/drug therapy
  16. Kntayya SB, Ibrahim MD, Mohd Ain N, Iori R, Ioannides C, Abdull Razis AF
    Nutrients, 2018 Jun 04;10(6).
    PMID: 29866995 DOI: 10.3390/nu10060718
    Glucoraphenin, a glucosinolate present in large quantities in radish is hydrolysed by myrosinase to form the isothiocyanate sulforaphene, which is believed to be responsible for its chemopreventive activity; however, the underlying mechanisms of action have not been investigated, particularly in human cell lines. The aim of the study is to assess the cytotoxicity of sulforaphene in HepG2 cells and evaluate its potential to enhance apoptosis. The cytotoxicity of sulforaphene in HepG2 cells was carried out ensuing an initial screening with two other cell lines, MFC-7 and HT-29, where sulforaphene displayed highest toxicity in HepG2 cells following incubation at 24, 48 and 72 h. In contrast, the intact glucosinolate showed no cytotoxicity. Morphological studies indicated that sulforaphene stimulated apoptosis as exemplified by cell shrinkage, blebbing, chromatin condensation, and nuclear fragmentation. The Annexin V assay revealed significant increases in apoptosis and the same treatment increased the activity of caspases -3/7 and -9, whereas a decline in caspase-8 was observed. Impairment of cell proliferation was indicated by cell cycle arrest at the Sub G₀/G₁ phase as compared to the other phases. It may be concluded that sulforaphene, but not its parent glucosinolate, glucoraphenin, causes cytotoxicity and stimulates apoptosis in HepG2 cells.
    Matched MeSH terms: Liver Neoplasms/drug therapy*
  17. Ebadi M, Bullo S, Buskara K, Hussein MZ, Fakurazi S, Pastorin G
    Sci Rep, 2020 12 09;10(1):21521.
    PMID: 33298980 DOI: 10.1038/s41598-020-76504-5
    The use of nanocarriers composed of polyethylene glycol- and polyvinyl alcohol-coated vesicles encapsulating active molecules in place of conventional chemotherapy drugs can reduce many of the chemotherapy-associated challenges because of the increased drug concentration at the diseased area in the body. The present study investigated the structure and magnetic properties of iron oxide nanoparticles in the presence of polyvinyl alcohol and polyethylene glycol as the basic surface coating agents. We used superparamagnetic iron oxide nanoparticles (FNPs) as the core and studied their effectiveness when two polymers, namely polyvinyl alcohol (PVA) and polyethylene glycol (PEG), were used as the coating agents together with magnesium-aluminum-layered double hydroxide (MLDH) as the nanocarrier. In addition, the anticancer drug sorafenib (SO), was loaded on MLDH and coated onto the surface of the nanoparticles, to best exploit this nano-drug delivery system for biomedical applications. Samples were prepared by the co-precipitation method, and the resulting formation of the nanoparticles was confirmed by X-ray, FTIR, TEM, SEM, DLS, HPLC, UV-Vis, TGA and VSM. The X-ray diffraction results indicated that all the as-synthesized samples contained highly crystalline and pure Fe3O4. Transmission electron microscopy analysis showed that the shape of FPEGSO-MLDH nanoparticles was generally spherical, with a mean diameter of 17 nm, compared to 19 nm for FPVASO-MLDH. Fourier transform infrared spectroscopy confirmed the presence of nanocarriers with polymer-coating on the surface of iron oxide nanoparticles and the existence of loaded active drug consisting of sorafenib. Thermogravimetric analyses demonstrated the thermal stability of the nanoparticles, which displayed enhanced anticancer effect after coating. Vibrating sample magnetometer (VSM) curves of both produced samples showed superparamagnetic behavior with the high saturation magnetization of 57 emu/g for FPEGSO-MLDH and 49 emu/g for FPVASO-MLDH. The scanning electron microscopy (SEM) images showed a narrow size distribution of both final samples. The SO drug loading and the release behavior from FPEGSO-MLDH and FPVASO-MLDH were assessed by ultraviolet-visible spectroscopy. This evaluation showed around 85% drug release within 72 h, while 74% of sorafenib was released in phosphate buffer solution at pH 4.8. The release profiles of sorafenib from the two designed samples were found to be sustained according to pseudo-second-order kinetics. The cytotoxicity studies confirmed the anti-cancer activity of the coated nanoparticles loaded with SO against liver cancer cells, HepG2. Conversely, the drug delivery system was less toxic than the pure drug towards fibroblast-type 3T3 cells.
    Matched MeSH terms: Liver Neoplasms/drug therapy
  18. Khaw KY, Kumar P, Yusof SR, Ramanathan S, Murugaiyah V
    Arch Pharm (Weinheim), 2020 Nov;353(11):e2000156.
    PMID: 32716578 DOI: 10.1002/ardp.202000156
    α-Mangostin has been reported to possess a broad range of pharmacological effects including potent cholinesterase inhibition, but the development of α-mangostin as a potential lead compound is impeded by its toxicity. The present study investigated the impact of simple structural modification of α-mangostin on its cholinesterase inhibitory activities and toxicity toward neuroblastoma and liver cancer cells. The dialkylated derivatives retained good acetylcholinesterase (AChE) inhibitory activities with IC50 values between 4.15 and 6.73 µM, but not butyrylcholinesterase (BChE) inhibitory activities, compared with α-mangostin, a dual inhibitor (IC50 : AChE, 2.48 µM; BChE, 5.87 µM). Dialkylation of α-mangostin produced AChE selective inhibitors that formed hydrophobic interactions at the active site of AChE. Interestingly, all four dialkylated derivatives of α-mangostin showed much lower cytotoxicity, being 6.4- to 9.0-fold and 3.8- to 5.5-fold less toxic than their parent compound on neuroblastoma and liver cancer cells, respectively. Likewise, their selectivity index was higher by 1.9- to 4.4-fold; in particular, A2 and A4 showed improved selectivity index compared with α-mangostin. Taken together, modification of the hydroxyl groups of α-mangostin at positions C-3 and C-6 greatly influenced its BChE inhibitory and cytotoxic but not its AChE inhibitory activities. These dialkylated derivatives are viable candidates for further structural modification and refinement, worthy in the search of new AChE inhibitors with higher safety margins.
    Matched MeSH terms: Liver Neoplasms/drug therapy*
  19. Waziri PM, Abdullah R, Rosli R, Omar AR, Abdul AB, Kassim NK, et al.
    Asian Pac J Cancer Prev, 2018 Apr 25;19(4):917-922.
    PMID: 29693341
    Clausena excavata Burm f. is used by traditional healers to treat cancer patients in South East Asia. The use of the
    plant and its compounds is based on Asian folklore with little or no scientific evidence supporting the therapeutic efficacy
    The current study aimed to determine the effect of pure clausenidin isolated from C. excavata on caspase-8-induced cell
    death as well as angiogenesis in the HepG2 hepatocellular carcinoma cell line. Caspase-8 and extrinsic death receptor
    protein expression was determined using spectrophotometry and protein profile arrays, respectively. Ultrastructural
    analysis of clausenidin-treated cells was conducted using transmission electron microscopy. In addition, anti-angiogenic
    effects of clausenidin were investigated by Western blot analysis. Clausenidin significantly (p<0.05) increased the
    activity of caspase-8 and expression of protein components of the death inducing signaling complex (DISC) in HepG2
    cells. Ultrastructural analysis of the clausenidin-treated HepG2 cells revealed morphological abnormalities typical of
    apoptosis. Furthermore, clausenidin significantly (p<0.05) decreased the expression of vascular endothelial growth
    factor (VEGF). Therefore, clausenidin is a potential anti-angiogenic agent which may induce apoptosis of hepatocellular
    carcinoma cells.
    Matched MeSH terms: Liver Neoplasms/drug therapy
  20. Hafidh RR, Hussein SZ, MalAllah MQ, Abdulamir AS, Abu Bakar F
    Curr Cancer Drug Targets, 2018;18(8):807-815.
    PMID: 29141549 DOI: 10.2174/1568009617666171114144236
    BACKGROUND: Citrus bioactive compounds, as active anticancer agents, have been under focus by several studies worldwide. However, the underlying genes responsible for the anticancer potential have not been sufficiently highlighted.

    OBJECTIVES: The current study investigated the gene expression profile of hepatocellular carcinoma, HepG2, cells after treatment with Limonene.

    METHODS: The concentration that killed 50% of HepG2 cells was used to elucidate the genetic mechanisms of limonene anticancer activity. The apoptotic induction was detected by flow cytometry and confocal fluorescence microscope. Two of the pro-apoptotic events, caspase-3 activation and phosphatidylserine translocation were manifested by confocal fluorescence microscopy. Highthroughput real-time PCR was used to profile 1023 cancer-related genes in 16 different gene families related to the cancer development.

    RESULTS: In comparison to untreated cells, limonene increased the percentage of apoptotic cells up to 89.61%, by flow cytometry, and 48.2% by fluorescence microscopy. There was a significant limonene- driven differential gene expression of HepG2 cells in 15 different gene families. Limonene was shown to significantly (>2log) up-regulate and down-regulate 14 and 59 genes, respectively. The affected gene families, from the most to the least affected, were apoptosis induction, signal transduction, cancer genes augmentation, alteration in kinases expression, inflammation, DNA damage repair, and cell cycle proteins.

    CONCLUSION: The current study reveals that limonene could be a promising, cheap, and effective anticancer compound. The broad spectrum of limonene anticancer activity is interesting for anticancer drug development. Further research is needed to confirm the current findings and to examine the anticancer potential of limonene along with underlying mechanisms on different cell lines.

    Matched MeSH terms: Liver Neoplasms/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links