Displaying all 5 publications

Abstract:
Sort:
  1. Wong SK, Lim YY, Ling SK, Chan EW
    Pharmacognosy Res, 2014 Jan;6(1):67-72.
    PMID: 24497746 DOI: 10.4103/0974-8490.122921
    Three compounds isolated from the methanol (MeOH) leaf extract of Vallaris glabra (Apocynaceae) were those of caffeoylquinic acids (CQAs). This prompted a quantitative analysis of their contents in leaves of V. glabra in comparison with those of five other Apocynaceae species (Alstonia angustiloba, Dyera costulata, Kopsia fruticosa, Nerium oleander, and Plumeria obtusa), including flowers of Lonicera japonica (Japanese honeysuckle), the commercial source of chlorogenic acid (CGA).
    Matched MeSH terms: Lonicera
  2. Chan EW, Lim YY, Tan SP
    Pharmacognosy Res, 2011 Jul;3(3):178-84.
    PMID: 22022166 DOI: 10.4103/0974-8490.85003
    Chlorogenic acid (CGA) or 5-caffeoylquinic acid, was found to be the dominant phenolic compound in leaves of Etlingera elatior (Zingiberaceae). The CGA content of E. elatior leaves was significantly higher than flowers of Lonicera japonica (honeysuckle), the commercial source. In this study, a protocol to produce a standardised herbal CGA extract from leaves of E. elatior using column chromatography was developed.
    Matched MeSH terms: Lonicera
  3. Khan D, Khan HU, Khan F, Khan S, Badshah S, Khan AS, et al.
    PLoS One, 2014;9(4):e94952.
    PMID: 24733024 DOI: 10.1371/journal.pone.0094952
    A phytochemical investigation on the ethyl acetate soluble fraction of Lonicera quinquelocularis (whole plant) led to the first time isolation of one new phthalate; bis(7-acetoxy-2-ethyl-5-methylheptyl) phthalate (3) and two new benzoates; neopentyl-4-ethoxy-3, 5-bis (3-methyl-2-butenyl benzoate (4) and neopentyl-4-hydroxy-3, 5-bis (3-methyl-2-butenyl benzoate (5) along with two known compounds bis (2-ethylhexyl phthalate (1) and dioctyl phthalate (2). Their structures were established on the basis of spectroscopic analysis and by comparison with available data in the literature. All the compounds (1-5) were tested for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities in dose dependent manner. The IC50 (50% inhibitory effect) values of compounds 3 and 5 against AChE were 1.65 and 3.43 µM while the values obtained against BChE were 5.98 and 9.84 µM respectively. Compounds 2 and 4 showed weak inhibition profile.
    Matched MeSH terms: Lonicera/chemistry*
  4. Zhu W, Zheng W, Hu X, Xu X, Zhang L, Tian J
    Biochim Biophys Acta Proteins Proteom, 2017 Apr;1865(4):404-413.
    PMID: 28087425 DOI: 10.1016/j.bbapap.2017.01.004
    Lonicera japonica Thunb., also known as Jin Yin Hua and Japanese honeysuckle, is used as a herbal medicine in Asian countries. Its flowers have been used in folk medicine in the clinic and in making food or healthy beverages for over 1500years in China. To investigate the molecular processes involved in L. japonica development from buds to flowers exposed to UV radiation, a comparative proteomics analysis was performed. Fifty-four proteins were identified as differentially expressed, including 42 that had increased expression and 12 that had decreased expression. The levels of the proteins related to glycolysis, TCA/organic acid transformation, major carbohydrate metabolism, oxidative pentose phosphate, stress, secondary metabolism, hormone, and mitochondrial electron transport were increased during flower opening process after exposure to UV radiation. Six metabolites in L. japonica buds and flowers were identified and relatively quantified using LC-MS/MS. The antioxidant activity was performed using a 1,1-diphenyl-2-picrylhydrazyl assay, which revealed that L. japonica buds had more activity than the UV irradiated flowers. This suggests that UV-B radiation induces production of endogenous ethylene in L. japonica buds, thus facilitating blossoming of the buds and activating the antioxidant system. Additionally, the higher metabolite contents and antioxidant properties of L. japonica buds indicate that the L. japonica bud stage may be a more optimal time to harvest than the flower stage when using for medicinal properties.
    Matched MeSH terms: Lonicera/metabolism*
  5. Wang T, Yang B, Guan Q, Chen X, Zhong Z, Huang W, et al.
    BMC Plant Biol, 2019 May 14;19(1):198.
    PMID: 31088368 DOI: 10.1186/s12870-019-1803-1
    BACKGROUND: Lonicera japonica Thunb. flower has been used for the treatment of various diseases for a long time and attracted many studies on its potential effects. Transcription factors (TFs) regulate extensive biological processes during plant development. As the restricted reports of L. japonica on TFs, our work was carried out to better understand the TFs' regulatory roles under different developmental stages in L. japonica.

    RESULTS: In this study, 1316 TFs belonging to 52 families were identified from the transcriptomic data, and corresponding expression profiles during the L. japonica flower development were comprehensively analyzed. 917 (69.68%) TFs were differentially expressed. TFs in bHLH, ERF, MYB, bZIP, and NAC families exhibited obviously altered expression during flower growth. Based on the analysis of differentially expressed TFs (DETFs), TFs in MYB, WRKY, NAC and LSD families that involved in phenylpropanoids biosynthesis, senescence processes and antioxidant activity were detected. The expression of MYB114 exhibited a positive correlation with the contents of luteoloside; Positive correlation was observed among the expression of MYC12, chalcone synthase (CHS) and flavonol synthase (FLS), while negative correlation was observed between the expression of MYB44 and the synthases; The expression of LSD1 was highly correlated with the expression of SOD and the total antioxidant capacity, while the expression of LOL1 and LOL2 exhibited a negative correlation with them; Many TFs in NAC and WRKY families may be potentially involved in the senescence process regulated by hormones and reactive oxygen species (ROS). The expression of NAC19, NAC29, and NAC53 exhibited a positive correlation with the contents of ABA and H2O2, while the expression of WRKY53, WRKY54, and WRKY70 exhibited a negative correlation with the contents of JA, SA and ABA.

    CONCLUSIONS: Our study provided a comprehensive characterization of the expression profiles of TFs during the developmental stages of L. japonica. In addition, we detected the key TFs that may play significant roles in controlling active components biosynthesis, antioxidant activity and flower senescence in L. japonica, thereby providing valuable insights into the molecular networks underlying L. japonica flower development.

    Matched MeSH terms: Lonicera
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links