Displaying publications 1 - 20 of 67 in total

Abstract:
Sort:
  1. Mohamad N, Ubaidillah, Mazlan SA, Imaduddin F, Choi SB, Yazid IIM
    PLoS One, 2018;13(4):e0191795.
    PMID: 29630595 DOI: 10.1371/journal.pone.0191795
    In this study, a new magnetorheological (MR) grease was made featuring plate-like carbonyl iron (CI) particles, and its magnetic field-dependent rheological properties were experimentally characterized. The plate-like CI particles were prepared through high-energy ball milling of spherical CI particles. Then, three different ratios of the CI particles in the MR grease, varying from 30 to 70 wt% were mixed by dispersing the plate-like CI particles into the grease medium with a mechanical stirrer. The magnetic field-dependent rheological properties of the plate-like CI particle-based MR grease were then investigated using a rheometer by changing the magnetic field intensity from 0 to 0.7 T at room temperature. The measurement was undertaken at two different modes, namely, a continuous shear mode and oscillation mode. It was shown that both the apparent viscosity and storage modulus of the MR grease were heavily dependent on the magnetic field intensity as well as the CI particle fraction. In addition, the differences in the yield stress and the MR effect between the proposed MR grease featuring the plate-like CI particles and the existing MR grease with the spherical CI particles were investigated and discussed in detail.
    Matched MeSH terms: Magnetic Fields*
  2. Farooq J, Mushtaq M, Munir S, Ramzan M, Chung JD, Farooq U
    Sci Rep, 2018 Sep 03;8(1):13137.
    PMID: 30177724 DOI: 10.1038/s41598-018-31538-8
    This study deals with the steady laminar slip flow of an incompressible Newtonian fluid in a non-uniform permeable channel under the influence of transverse magnetic field. The reabsorption through the wall is accounted for by considering flux as a function of downstream distance. The non-linear coupled partial differential equations of motion are first transformed into a single fourth order partial differential equation and then solved analytically using Adomain decomposition method. Effects of pertinent parameters on different flow properties are discussed by plotting graphs. Results reveal that magnetic field considerably influences the behavior of flow.
    Matched MeSH terms: Magnetic Fields
  3. Shekholeslami M, Ashorynejad HR, Domairry D, Ishak Hashim
    Sains Malaysiana, 2012;41:1281-1285.
    In this paper, the problem of laminar viscous flow in a semi-porous channel in the presence of transverse magnetic field is studied. The Optimal Homotopy Asymptotic Method (OHAM) is employed to approximate the solution of the system of nonlinear differential equations governing the problem. The influence of the Hartmann number (Ha) and the Reynolds number (Re) on the flow was investigated. The results of the OHAM were compared with homotopy analysis method (HAM) and variation iteration method (VIM) results.
    Matched MeSH terms: Magnetic Fields
  4. Gul T, Islam S, Shah RA, Khan I, Shafie S
    PLoS One, 2014;9(6):e97552.
    PMID: 24949988 DOI: 10.1371/journal.pone.0097552
    In this work, we have carried out the influence of temperature dependent viscosity on thin film flow of a magnetohydrodynamic (MHD) third grade fluid past a vertical belt. The governing coupled non-linear differential equations with appropriate boundary conditions are solved analytically by using Adomian Decomposition Method (ADM). In order to make comparison, the governing problem has also been solved by using Optimal Homotopy Asymptotic Method (OHAM). The physical characteristics of the problem have been well discussed in graphs for several parameter of interest.
    Matched MeSH terms: Magnetic Fields*
  5. Mohamad N, Ubaidillah, Mazlan SA, Choi SB, Abdul Aziz SA, Sugimoto M
    Int J Mol Sci, 2019 Mar 27;20(7).
    PMID: 30934679 DOI: 10.3390/ijms20071525
    The transient response of magnetorheological (MR) materials, in general, is very important for design consideration in MR-based devices. Better response to magnetic fields is beneficial for a better response rate to the electrical current applied in the electromagnetic coil. As a result, MR-based devices would have a high response to external stimuli. In this work, the principal characteristics of magnetorheological greases (MRGs) which have two different particle shapes are experimentally investigated. One type of particle distributed in the grease medium is conventional spherical-shaped carbonyl iron (CI) particles, while the other is plate-like CI particles made using a high-energy rotary ball mill from spherical CI particles. A set of bidisperse MRG samples are firstly prepared by adjusting the weight percentage of the plate-like CI particles and mixing with the spherical CI particles. Subsequently, three important properties of MRGs in terms of their practical application are measured and compared between the two different particle shapes. The field-dependent apparent viscoelastic properties of the prepared MRG samples are measured, followed by the field-dependent storage and loss moduli using an oscillatory shear rheometer. In addition, the transient response time, which indicates the speed in the actuating period of MRGs, is measured by changing the strain amplitude. Then, a comparative assessment on the three properties are undertaken between two different particle shapes by presenting the corresponding results in the same plot. It is shown that the bidisperse MRG with plate-like CI particles exhibits an increase in the initial apparent viscosity as well as stiffness property compared to the MRG with spherical particles only.
    Matched MeSH terms: Magnetic Fields*
  6. Samiulhaq, Ahmad S, Vieru D, Khan I, Shafie S
    PLoS One, 2014;9(5):e88766.
    PMID: 24785147 DOI: 10.1371/journal.pone.0088766
    Magnetic field influence on unsteady free convection flow of a second grade fluid near an infinite vertical flat plate with ramped wall temperature embedded in a porous medium is studied. It has been observed that magnitude of velocity as well as skin friction in case of ramped temperature is quite less than the isothermal temperature. Some special cases namely: (i) second grade fluid in the absence of magnetic field and porous medium and (ii) Newtonian fluid in the presence of magnetic field and porous medium, performing the same motion are obtained. Finally, the influence of various parameters is graphically shown.
    Matched MeSH terms: Magnetic Fields*
  7. Khatir NM, Banihashemian SM, Periasamy V, Ritikos R, Majid WHA, Rahman SA
    Sensors (Basel), 2012;12(3):3578-3586.
    PMID: 22737025 DOI: 10.3390/s120303578
    This work presents an experimental study of gold-DNA-gold structures in the presence and absence of external magnetic fields with strengths less than 1,200.00 mT. The DNA strands, extracted by standard method were used to fabricate a Metal-DNA-Metal (MDM) structure. Its electric behavior when subjected to a magnetic field was studied through its current-voltage (I-V) curve. Acquisition of the I-V curve demonstrated that DNA as a semiconductor exhibits diode behavior in the MDM structure. The current versus magnetic field strength followed a decreasing trend because of a diminished mobility in the presence of a low magnetic field. This made clear that an externally imposed magnetic field would boost resistance of the MDM structure up to 1,000.00 mT and for higher magnetic field strengths we can observe an increase in potential barrier in MDM junction. The magnetic sensitivity indicates the promise of using MDM structures as potential magnetic sensors.
    Matched MeSH terms: Magnetic Fields*
  8. Yasin MH, Ishak A, Pop I
    Sci Rep, 2015;5:17848.
    PMID: 26647651 DOI: 10.1038/srep17848
    The steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet with effects of viscous dissipation, Joule heating and partial velocity slip in the presence of a magnetic field is investigated. The partial differential equations are reduced to nonlinear ordinary differential equations by using a similarity transformation, before being solved numerically by shooting technique. Results indicate that the skin friction coefficient and the local Nusselt number increase as magnetic parameter increases. It is found that for the stretching sheet the solution is unique while for the shrinking sheet there exist nonunique solutions (dual solutions) in certain range of parameters. The stability analysis shows that the upper branch solution is stable while the lower branch solution is unstable.
    Matched MeSH terms: Magnetic Fields
  9. Jamil D, Roslan R, Abdulhameed M, Hashim I
    Sains Malaysiana, 2018;47:2581-2587.
    The unsteady blood flow in the stenosed porous artery subjected to a magnetic field was studied analytically. Oscillating
    pressure gradient and periodic body acceleration were imposed on the flow field. The effects of the magnetic field and
    the permeability of the stenosed artery on the blood velocity were studied. The results showed that the magnetic field
    affected the flow field significantly which can be beneficial for some practical problems.
    Matched MeSH terms: Magnetic Fields
  10. Abdal S, Hussain S, Siddique I, Ahmadian A, Ferrara M
    Sci Rep, 2021 Apr 08;11(1):7799.
    PMID: 33833251 DOI: 10.1038/s41598-021-86953-1
    It is a theoretical exportation for mass transpiration and thermal transportation of Casson nanofluid over an extending cylindrical surface. The Stagnation point flow through porous matrix is influenced by magnetic field of uniform strength. Appropriate similarity functions are availed to yield the transmuted system of leading differential equations. Existence for the solution of momentum equation is proved for various values of Casson parameter [Formula: see text], magnetic parameter M, porosity parameter [Formula: see text] and Reynolds number Re in two situations of mass transpiration (suction/injuction). The core interest for this study aroused to address some analytical aspects. Therefore, existence of solution is proved and uniqueness of this results is discussed with evaluation of bounds for existence of solution. Results for skin friction factor are established to attain accuracy for large injection values. Thermal and concentration profiles are delineated numerically by applying Runge-Kutta method and shooting technique. The flow speed retards against M, [Formula: see text] and [Formula: see text] for both situations of mass injection and suction. The thermal boundary layer improves with Brownian and thermopherotic diffusions.
    Matched MeSH terms: Magnetic Fields
  11. Yi C, Jiang F, Yang C, Chen Z, Ding Z, Liu J
    Sensors (Basel), 2021 Mar 05;21(5).
    PMID: 33807746 DOI: 10.3390/s21051813
    Inertial measurement unit (IMU)-based joint angle estimation is an increasingly mature technique that has a broad range of applications in clinics, biomechanics and robotics. However, the deviations of different IMUs' reference frames, referring to IMUs' individual orientations estimating errors, is still a challenge for improving the angle estimation accuracy due to conceptual confusion, relatively simple metrics and the lack of systematical investigation. In this paper, we clarify the determination of reference frame unification, experimentally study the time-varying characteristics of reference frames' deviations and accordingly propose a novel method with a comprehensive metric to unify reference frames. To be specific, we firstly define the reference frame unification (RFU) and distinguish it with drift correction that has always been confused with the term RFU. Secondly, we design a mechanical gimbal-based experiment to study the deviations, where sensor-to-body alignment and rotation-caused differences of orientations are excluded. Thirdly, based on the findings of the experiment, we propose a novel method to utilize the consistency of the joint axis under the hinge-joint constraint, gravity acceleration and local magnetic field to comprehensively unify reference frames, which meets the nonlinear time-varying characteristics of the deviations. The results on ten human subjects reveal the feasibility of our proposed method and the improvement from previous methods. This work contributes to a relatively new perspective of considering and improving the accuracy of IMU-based joint angle estimation.
    Matched MeSH terms: Magnetic Fields
  12. Ahmad Nazlin Yusoff, Mustaffa Hj. Abdullah, Sahrin Hj. Ahmab, Ng L
    Sampels of Mnx-zMgzZn1-xFe2O4 ferrites, with x = 0.5, 0 < z < 0.5; x = 0.6, 0 < z 0.6 and x = 0.7, 0 < z < 0.7, were prepared by solid state reaction. For all samples, magnetization as a function of applied magnetic field was measured at room temperature (TR) and several temperatures above TR but below the Neel temperature (TN); while magnetic hysteresis was obtained at TR and 373 K using a vibrating sample magnetometer (VSM). Electrical resistivity at TR was measured by a two terminal method. The three series of Mn-Mg-Zn ferrite indicate a maximum ,agnetization at certain substitution of Mg. TN increased with the increase of Mg content while resistivity varied in the opposite manner. The variation of magnetization is interpreted as due to Mg started to replace the Mn at the tetrahedral sites (A) so that the resultant magnetic moment increased. However further substitution occurred at the octahedral sites (B), thus lowering the magnetic moment. A small coercivity indicates that the samples are soft ferrites with a small energy loss. A reduction in the electrical resistivity with Mg content probably due to an increase in the mobility of charge hopping between the Fe2+ and Fe3+ ions and also between Mn2+ and Mn3+ ions.
    Sampel ferit Mnx-zMgzZn1-xFe2O4 dengan x = 0.5, 0 < z < 0.5; x = 0.6, 0 < z 0.6 dan x = 0.7, 0 < z < 0.7, disediakan dengan tindak balas keadaan pepejal. Pengukuran pemagnetan sebagai fungsi medan magnet dilakukan pada suhu bilik (TR) dan suhu-suhu yang lebih tinggi tetapi di bawah suhu Neel bilik (TR) dan suhu-suhu yang lebih tinggi tetapi di bawah suhu Neel (TN) serta histerisis magnet pada suhu bilik dan 373 K diperolehi untuk semua sampel menggunakan magnetometer sampel bergetar (VSM). Kerintangan elektrik pada suhu bilik diperolehi dengan kaedah dua terminal. Ketiga-tiga siri ferit Mn-Mg-Zn itu masing-masing menunjukkan suatu pemagnetan maksimum pada suatu kadar penggantian Mn oleh Mg. TN meningkat dengan kandungan Mg tetapi kerintangan elektrik berubah sebaliknya. Perubahan pemagnetan seperti yang tersebut disebabkan Mg mula menggantikan Mn pada tapak tetrahedron (A) menyebabkan momen magnet paduan meningkat. Penambahan Mg seterusnya menyebabkan Mn pada tapak oktahedron pula diganti, sehingga momen magnet paduan mengurang. Koersiviti yang kecil menunjukkan sampel bersifat magnet lembut dengan kehilangan tenaga yang sangat kecil. Pengurangan kerintangan dengan penambahan Mg mungkin disebabkan oleh peningkatan kelincahan pembawa cas yang melompat di antara ion-ion Fe2+ dan Fe3+ dan juga di antara Mn2+ dan Mn3+.
    Matched MeSH terms: Magnetic Fields
  13. Lok YY, Anuar Ishak, Pop I
    Sains Malaysiana, 2011;40:1179-1186.
    A steady two-dimensional magnetohydrodynamic (MHD) stagnation-point flow of a viscous and electrically conducting fluid over a permeable shrinking sheet has been studied. The governing partial differential equations are reduced to the nonlinear ordinary differential equations by a similarity transformation. The resulting differential equations are then solved numerically using an implicit finite difference method. It is found that the solutions are non-unique for weak magnetic field, strong suction and large velocity ratio between free stream velocity and wall shrinking velocity.
    Matched MeSH terms: Magnetic Fields
  14. Ruwaidiah Idris, Ishak Hashim
    In this work we use an analytical technique to analyse the effect of a vertical uniform magnetic field on the onset of steady Benard-Marangoni convection in a horizontal layer of electrically conducting fluid subject to a uniform vertical temperature gradient in the asymptotic limit short waves. We found that in the limit of short waves, the leading order expression for the marginal curve is not affected by the magnetic field.
    Dalam makalah ini kesan medan magnet menegak seragam ke atas lengkung sut permulaan olakan mantap Benard-Marangoni dalam lapisan bendalir mengufuk berpengalir elektrik dikaji tertakluk kepada kecerunan suhu yang seragam dalam had asimptot gelombang pendek. Kami dapati medan magnet tidak memberi kesan kepada sebutan utama lengkung sut dalam had gelombang pendek.
    Matched MeSH terms: Magnetic Fields
  15. Ahmad NF, Komatsu K, Iwasaki T, Watanabe K, Taniguchi T, Mizuta H, et al.
    Sci Rep, 2019 Feb 28;9(1):3031.
    PMID: 30816251 DOI: 10.1038/s41598-019-39909-5
    We report on the observation of quantum transport and interference in a graphene device that is attached with a pair of split gates to form an electrostatically-defined quantum point contact (QPC). In the low magnetic field regime, the resistance exhibited Fabry-Pérot (FP) resonances due to np'n(pn'p) cavities formed by the top gate. In the quantum Hall (QH) regime with a high magnetic field, the edge states governed the phenomena, presenting a unique condition where the edge channels of electrons and holes along a p-n junction acted as a solid-state analogue of a monochromatic light beam. We observed a crossover from the FP to QH regimes in ballistic graphene QPC under a magnetic field with varying temperatures. In particular, the collapse of the QH effect was elucidated as the magnetic field was decreased. Our high-mobility graphene device enabled observation of such quantum coherence effects up to several tens of kelvins. The presented device could serve as one of the key elements in future electronic quantum optic devices.
    Matched MeSH terms: Magnetic Fields
  16. Athirah Othman, Johan Sohaili, Nur Sumaiyyah Supian
    MyJurnal
    This review is aimed to present an in-depth review of several methodologies on magnetic
    water treatment (MWT) that are employed as scale treatment in water pipeline and to
    critically discuss each method in order to determine the best outcome of MWT. The
    magnetically assisted water in pipeline in various applications are presented, argued and
    best variables are listed according to the performance of each MWT. The advantages and
    limitations of MWT are discussed and the main outcome from the review summarize the
    best method in MWT, especially in effectiveness of treating scale in terms of sustained
    environment benefits. Magnetic field application in water treatment has the potential to
    improve the water pipeline performance and lifetime. The application is also significant in
    controlling the growth of scale in upcoming system. Both of these benefits lead to healthier
    water treatment, increasing and maintaining the lifetime and performance of water system.
    Matched MeSH terms: Magnetic Fields
  17. Williamson LA, Blakie PB
    Phys Rev Lett, 2017 Dec 22;119(25):255301.
    PMID: 29303307 DOI: 10.1103/PhysRevLett.119.255301
    In zero magnetic field the ground-state manifold of a ferromagnetic spin-1 condensate is SO(3) and exhibits Z_{2} vortices as topological defects. We investigate the phase-ordering dynamics of this system after being quenched into this ferromagnetic phase from a zero-temperature unmagnetized phase. Following the quench, we observe the ordering of both magnetic and gauge domains. We find that these domains grow diffusively, i.e., with domain size L(t)∼t^{1/2}, and exhibit dynamic scale invariance. The coarsening dynamics progresses as Z_{2} vortices annihilate; however, we find that at finite energy a number of these vortices persist in small clumps without influencing magnetic or gauge order. We consider the influence of a small nonzero magnetic field, which reduces the ground-state symmetry, and show that this sets a critical length scale such that when the domains reach this size the system dynamically transitions in order parameter and scaling behavior from an isotropic to an anisotropic ferromagnetic superfluid.
    Matched MeSH terms: Magnetic Fields
  18. Gong J, Hou L, Ching YC, Ching KY, Hai ND, Chuah CH
    Int J Biol Macromol, 2024 Apr;264(Pt 2):130525.
    PMID: 38431004 DOI: 10.1016/j.ijbiomac.2024.130525
    To realize the maximum therapeutic activity of medicine and protect the body from the adverse effects of active ingredients, drug delivery systems (DDS) featured with targeted transportation sites and controllable release have captured extensive attention over the past decades. Hydrogels with unique three-dimensional (3D) porous structures present tunable capacity, controllable degradation, various stimuli sensitivity, therapeutic agents encapsulation, and loaded drugs protection properties, which endow hydrogels with bred-in-the-bone advantages as vehicles for drug delivery. In recent years, with the impressive consciousness of the "back-to-nature" concept, biomass materials are becoming the 'rising star' as the hydrogels building blocks for controlled drug release carriers due to their biodegradability, biocompatibility, and non-toxicity properties. In particular, cellulose and its derivatives are promising candidates for fabricating hydrogels as their rich sources and high availability, and various smart cellulose-based hydrogels as targeted carriers under exogenous such as light, electric field, and magnetic field or endogenous such as pH, temperature, ionic strength, and redox gradients. In this review, we summarized the main synthetic strategies of smart cellulose-based hydrogels including physical and chemical cross-linking, and illustrated the detailed intelligent-responsive mechanism of hydrogels in DDS under external stimulus. Additionally, the ongoing development and challenges of cellulose-based hydrogels in the biomedical field are also presented.
    Matched MeSH terms: Magnetic Fields
  19. Hapipi NM, Mazlan SA, Ubaidillah U, Abdul Aziz SA, Ahmad Khairi MH, Nordin NA, et al.
    Int J Mol Sci, 2020 Mar 05;21(5).
    PMID: 32151055 DOI: 10.3390/ijms21051793
    Chemically crosslinked hydrogel magnetorheological (MR) plastomer (MRP) embedded with carbonyl iron particles (CIPs) exhibits excellent magnetic performance (MR effect) in the presence of external stimuli especially magnetic field. However, oxidation and desiccation in hydrogel MRP due to a large amount of water content as a dispersing phase would limit its usage for long-term applications, especially in industrial engineering. In this study, different solvents such as dimethyl sulfoxide (DMSO) are also used to prepare polyvinyl alcohol (PVA) hydrogel MRP. Thus, to understand the dynamic viscoelastic properties of hydrogel MRP, three different samples with different solvents: water, DMSO, and their binary mixtures (DMSO/water) were prepared and systematically carried out using the oscillatory shear. The outcomes demonstrate that the PVA hydrogel MRP prepared from precursor gel with water shows the highest MR effect of 15,544% among the PVA hydrogel MRPs. However, the samples exhibit less stability and tend to oxidise after a month. Meanwhile, the samples with binary mixtures (DMSO/water) show an acceptable MR effect of 11,024% with good stability and no CIPs oxidation. Otherwise, the sample with DMSO has the lowest MR effect of 7049% and less stable compared to the binary solvent samples. This confirms that the utilisation of DMSO as a new solvent affects the rheological properties and stability of the samples.
    Matched MeSH terms: Magnetic Fields*
  20. Rifai D, Abdalla AN, Ali K, Razali R
    Sensors (Basel), 2016;16(3):298.
    PMID: 26927123 DOI: 10.3390/s16030298
    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.
    Matched MeSH terms: Magnetic Fields
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links