Displaying publications 1 - 20 of 149 in total

Abstract:
Sort:
  1. Cross AT, van der Ent A, Wickmann M, Skates LM, Sumail S, Gebauer G, et al.
    Ann Bot, 2022 Dec 31;130(7):927-938.
    PMID: 36306274 DOI: 10.1093/aob/mcac134
    BACKGROUND AND AIMS: While isotopic enrichment of nitrogen (15N) and carbon (13C) is often used to determine whether carnivorous plant species capture and assimilate nutrients from supplemental sources such as invertebrate prey or mammal excreta (heterotrophic nutrition), little is known about how successful the different strategies deployed by carnivorous plants are at obtaining supplemental nutrition. The collection of mammalian faeces by Nepenthes (tropical pitcher plants) is the result of a highly specialized biological mutualism that results in heterotrophic nitrogen gain; however, it remains unknown how effective this strategy is in comparison to Nepenthes species not known to collect mammalian faeces.

    METHODS: We examined how isotopic enrichment varied in the diverse genus Nepenthes, among species producing pitchers for invertebrate capture and species exhibiting mutualisms for the collection of mammal excreta. Enrichment factors were calculated from δ15N and δ13C values from eight Nepenthes species and naturally occurring hybrids along with co-occurring reference (non-carnivorous) plants from three mountain massifs in Borneo: Mount Kinabalu, Mount Tambuyukon and Mount Trus Madi.

    RESULTS: All Nepenthes examined, except N. edwardsiana, were significantly enriched in 15N compared to co-occurring non-carnivorous plants, and 15N enrichment was more than two-fold higher in species with adaptations for the collection of mammal excreta compared with other Nepenthes.

    CONCLUSIONS: The collection of mammal faeces clearly represents a highly effective strategy for heterotrophic nitrogen gain in Nepenthes. Species with adaptations for capturing mammal excreta occur exclusively at high elevation (i.e. are typically summit-occurring) where previous studies suggest invertebrate prey are less abundant and less frequently captured. As such, we propose this strategy may maximize nutritional return by specializing towards ensuring the collection and retention of few but higher-value N sources in environments where invertebrate prey may be scarce.

    Matched MeSH terms: Mammals*
  2. Siew ZY, Loh A, Segeran S, Leong PP, Voon K
    DNA Cell Biol, 2023 Jun;42(6):289-304.
    PMID: 37015068 DOI: 10.1089/dna.2022.0561
    Orthoreovirus is a nonenveloped double-stranded RNA virus under the Reoviridae family. This group of viruses, especially mammalian orthoreovirus (MRV), are reported with great therapeutic values due to their oncolytic effects. In this review, the life cycle and oncolytic effect of MRV and a few emerging reoviruses were summarized. This article also highlights the challenges and strategies of utilizing MRV and the emerging reoviruses, avian orthoreovirus (ARV) and pteropine orthoreovirus (PRV), as oncolytic viruses (OVs). Besides, the emergence of potential ARV and PRV as OVs were discussed in comparison to MRV. Finally, the risk of reovirus as zoonosis or reverse zoonosis (zooanthroponosis) were debated, and concerns were raised in this article, which warrant continue surveillance of reovirus (MRV, ARV, and PRV) in animals, humans, and the environment.
    Matched MeSH terms: Mammals
  3. Kotla NG, Mohd Isa IL, Larrañaga A, Maddiboyina B, Swamy SK, Sivaraman G, et al.
    Adv Healthc Mater, 2023 Aug;12(20):e2203104.
    PMID: 36972409 DOI: 10.1002/adhm.202203104
    In recent years, the development of hyaluronic acid or hyaluronan (HA) based scaffolds, medical devices, bioconjugate systems have expanded into a broad range of research and clinical applications. Research findings over the last two decades suggest that the abundance of HA in most mammalian tissues with distinctive biological roles and chemical simplicity for modifications have made it an attractive material with a rapidly growing global market. Besides its use as native forms, HA has received much interest on so-called "HA-bioconjugates" and "modified-HA systems". In this review, the importance of chemical modifications of HA, underlying rationale approaches, and various advancements of bioconjugate derivatives with their potential physicochemical, and pharmacological advantages are summarized. This review also highlights the current and emerging HA-based conjugates of small molecules, macromolecules, crosslinked systems, and surface coating strategies with their biological implications, including their potentials and key challenges discussed in detail.
    Matched MeSH terms: Mammals
  4. Lim Boo Liat, Heyneman D
    Med J Malaya, 1965 Sep;20(1):54.
    PMID: 4221415
    Matched MeSH terms: Mammals*
  5. Jamil Al-Obaidi MM, Desa MNM
    J Neurosci Res, 2023 Nov;101(11):1687-1698.
    PMID: 37462109 DOI: 10.1002/jnr.25232
    Coronaviruses are prevalent in mammals and birds, including humans and bats, and they often spread through airborne droplets. In humans, these droplets then interact with angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), which are the main receptors for the SARS-CoV-2 virus. It can infect several organs, including the brain. The blood-brain barrier (BBB) is designed to maintain the homeostatic neural microenvironment of the brain, which is necessary for healthy neuronal activity, function, and stability. It prevents viruses from entering the brain parenchyma and does not easily allow chemicals to pass into the brain while assisting numerous compounds in exiting the brain. The purpose of this review was to examine how COVID-19 influences the BBB along with the mechanisms that indicate the BBB's deterioration. In addition, the cellular mechanism through which SARS-CoV-2 causes BBB destruction by binding to ACE2 was evaluated and addressed. The mechanisms of the immunological reaction that occurs during COVID-19 infection that may contribute to the breakdown of the BBB were also reviewed. It was discovered that the integrity of the tight junction (TJs), basement membrane, and adhesion molecules was damaged during COVID-19 infection, which led to the breakdown of the BBB. Therefore, understanding how the BBB is disrupted by COVID-19 infection will provide an indication of how the SARS-CoV-2 virus is able to reach the central nervous system (CNS). The findings of this research may help in the identification of treatment options for COVID-19 that can control and manage the infection.
    Matched MeSH terms: Mammals/metabolism
  6. Beaucournu JC, Wells K
    Parasite, 2009 Dec;16(4):283-7.
    PMID: 20092059
    We report on fleas collected from small mammals in a lower mountane rainforest in the Crocker Range National Park, Sabah, Borneo. Macrostylophora durdeni n. sp., collected from Dremomys everetti and, of minor importance, Tupaia montana, is described. Further records include Gryphopsylla jacobsoni segragata and Lentistivalius vomerus from T. montana.
    Matched MeSH terms: Mammals/anatomy & histology; Mammals/classification; Mammals/parasitology*
  7. Thangadurai S, Bajgiran M, Manickam S, Mohana-Kumaran N, Azzam G
    Histochem Cell Biol, 2022 Dec;158(6):517-534.
    PMID: 35881195 DOI: 10.1007/s00418-022-02133-w
    CTP biosynthesis is carried out by two pathways: salvage and de novo. CTPsyn catalyzes the latter. The study of CTPsyn activity in mammalian cells began in the 1970s, and various fascinating discoveries were made regarding the role of CTPsyn in cancer and development. However, its ability to fit into a cellular serpent-like structure, termed 'cytoophidia,' was only discovered a decade ago by three independent groups of scientists. Although the self-assembly of CTPsyn into a filamentous structure is evolutionarily conserved, the enzyme activity upon this self-assembly varies in different species. CTPsyn is required for cellular development and homeostasis. Changes in the expression of CTPsyn cause developmental changes in Drosophila melanogaster. A high level of CTPsyn activity and formation of cytoophidia are often observed in rapidly proliferating cells such as in stem and cancer cells. Meanwhile, the deficiency of CTPsyn causes severe immunodeficiency leading to immunocompromised diseases caused by bacteria, viruses, and parasites, making CTPsyn an attractive therapeutic target. Here, we provide an overview of the role of CTPsyn in cellular and disease perspectives along with its potential as a drug target.
    Matched MeSH terms: Mammals
  8. Mark JKK, Lim CSY, Nordin F, Tye GJ
    Mol Biol Rep, 2022 Nov;49(11):10593-10608.
    PMID: 35674877 DOI: 10.1007/s11033-022-07651-3
    BACKGROUND: Antibodies have proven to be remarkably successful for biomedical applications. They play important roles in epidemiology and medicine from diagnostics of diseases to therapeutics, treating diseases from incessant chronic diseases such as rheumatology to pandemic outbreaks. With no end in sight for the demand for antibody products, optimizations and new techniques must be expanded to accommodate this.

    METHODS AND RESULTS: This review discusses optimizations and techniques for antibody production through choice of discovery platforms, expression systems, cell culture mediums, and other strategies to increase expression yield. Each system has its own merits and demerits, and the strategy chosen is critical in addressing various biological aspects.

    CONCLUSIONS: There is still insufficient evidence to validate the efficacy of some of these techniques, and further research is needed to consolidate these industrial production systems. There is no doubt that more strategies, systems, and pipelines will contribute to enhance biopharmaceutical production.

    Matched MeSH terms: Mammals
  9. Yeo XY, Chae WR, Lee HU, Bae HG, Pettersson S, Grandjean J, et al.
    Gut Microbes, 2023 Dec;15(2):2283911.
    PMID: 38010368 DOI: 10.1080/19490976.2023.2283911
    The complex symbiotic relationship between the mammalian body and gut microbiome plays a critical role in the health outcomes of offspring later in life. The gut microbiome modulates virtually all physiological functions through direct or indirect interactions to maintain physiological homeostasis. Previous studies indicate a link between maternal/early-life gut microbiome, brain development, and behavioral outcomes relating to social cognition. Here we present direct evidence of the role of the gut microbiome in brain development. Through magnetic resonance imaging (MRI), we investigated the impact of the gut microbiome on brain organization and structure using germ-free (GF) mice and conventionalized mice, with the gut microbiome reintroduced after weaning. We found broad changes in brain volume in GF mice that persist despite the reintroduction of gut microbes at weaning. These data suggest a direct link between the maternal gut or early-postnatal microbe and their impact on brain developmental programming.
    Matched MeSH terms: Mammals
  10. Byrnes G, Lim NT, Spence AJ
    Proc Biol Sci, 2008 May 7;275(1638):1007-13.
    PMID: 18252673 DOI: 10.1098/rspb.2007.1684
    Arboreal animals negotiate a highly three-dimensional world that is discontinuous on many spatial scales. As the scale of substrate discontinuity increases, many arboreal animals rely on leaping or gliding locomotion between distant supports. In order to successfully move through their habitat, gliding animals must actively modulate both propulsive and aerodynamic forces. Here we examined the take-off and landing kinetics of a free-ranging gliding mammal, the Malayan colugo (Galeopterus variegatus) using a custom-designed three-dimensional accelerometry system. We found that colugos increase the propulsive impulse to affect longer glides. However, we also found that landing forces are negatively associated with glide distance. Landing forces decrease rapidly as glide distance increases from the shortest glides, then level off, suggesting that the ability to reorient the aerodynamic forces prior to landing is an important mechanism to reduce velocity and thus landing forces. This ability to substantially alter the aerodynamic forces acting on the patagial wing in order to reorient the body is a key to the transition between leaping and gliding and allows gliding mammals to travel long distances between trees with reduced risk of injury. Longer glides may increase the access to distributed resources and reduce the exposure to predators in the canopy or on the forest floor.
    Matched MeSH terms: Mammals/physiology*
  11. Pardo LE, Campbell MJ, Edwards W, Clements GR, Laurance WF
    PLoS One, 2018;13(5):e0197539.
    PMID: 29795615 DOI: 10.1371/journal.pone.0197539
    The rapid expansion of oil palm cultivation in the Neotropics has generated great debate around possible biodiversity impacts. Colombia, for example, is the largest producer of oil palm in the Americas, but the effects of oil palm cultivation on native fauna are poorly understood. Here, we compared how richness, abundance and composition of terrestrial mammal species differ between oil palm plantations and riparian forest in the Colombian Llanos region. Further, we determined the relationships and influence of landscape and habitat level variables on those metrics. We found that species richness and composition differed significantly between riparian forest and oil palm, with site level richness inside oil palm plantations 47% lower, on average, than in riparian forest. Within plantations, mammalian species richness was strongly negatively correlated with cattle abundance, and positively correlated with the density of undergrowth vegetation. Forest structure characteristics appeared to have weak and similar effects on determining mammal species richness and composition along riparian forest strips. Composition at the landscape level was significantly influenced by cover type, percentage of remaining forest and the distance to the nearest town, whereas within oil palm sites, understory vegetation, cattle relative abundance, and canopy cover had significant effects on community composition. Species specific abundance responses varied between land cover types, with oil palm having positive effects on mesopredators, insectivores and grazers. Our findings suggest that increasing habitat complexity, avoiding cattle and retaining native riparian forest-regardless of its structure-inside oil palm-dominated landscapes would help support higher native mammal richness and abundance at both local and landscape scales.
    Matched MeSH terms: Mammals*
  12. Kambol R, Gatseva A, Gifford RJ
    Retrovirology, 2022 Dec 20;19(1):30.
    PMID: 36539757 DOI: 10.1186/s12977-022-00615-2
    Lentiviruses (genus Lentivirus) are complex retroviruses that infect a broad range of mammals, including humans. Unlike many other retrovirus genera, lentiviruses have only rarely been incorporated into the mammalian germline. However, a small number of endogenous retrovirus (ERV) lineages have been identified, and these rare genomic "fossils" can provide crucial insights into the long-term history of lentivirus evolution. Here, we describe a previously unreported endogenous lentivirus lineage in the genome of the South African springhare (Pedetes capensis), demonstrating that the host range of lentiviruses has historically extended to rodents (order Rodentia). Furthermore, through comparative and phylogenetic analysis of lentivirus and ERV genomes, considering the biogeographic and ecological characteristics of host species, we reveal broader insights into the long-term evolutionary history of the genus.
    Matched MeSH terms: Mammals/genetics
  13. Chua P, Lim WK
    Cell Biol Int, 2023 Feb;47(2):367-373.
    PMID: 36423248 DOI: 10.1002/cbin.11966
    The culture of adherent mammalian cells involves adhesion to the tissue culture vessel. This requires attachment factors from serum and/or a suitable substrate on the vessel surface. Some cells require collagen or other substrates to promote neurite outgrowth, differentiation or growth. However, laboratories often lack guidance on the selection and/or optimisation of collagen. We model such selection/optimisation work in the PC12 neuronal cell line. PC12 (NS-1 variant) cells require a substrate for adherence. Comparing cell attachment against a series of substrates, we found collagen IV to be optimal. We show by comparison of morphology against a range of concentrations that 10 µg/ml is sufficient for supporting cell attachment, and also differentiation. PC12 cells from Riken Cell Bank do not require a substrate for routine culturing but only for differentiation. As all substrates supported attachment equally well, we used a novel serum-free approach and identified collagen IV as its preferred substrate. For these cells, Dulbecco's modified eagle's medium but not Roswell Park Memorial Institute (RPMI) media supports normal cell attachment. However, coating with collagen IV enabled the cells to grow equally well in RPMI. Hence the strategic use of collagen is essential in laboratories working with anchorage-dependent cell lines.
    Matched MeSH terms: Mammals/metabolism
  14. Choo SW, Rayko M, Tan TK, Hari R, Komissarov A, Wee WY, et al.
    Genome Res, 2016 10;26(10):1312-1322.
    PMID: 27510566
    Pangolins, unique mammals with scales over most of their body, no teeth, poor vision, and an acute olfactory system, comprise the only placental order (Pholidota) without a whole-genome map. To investigate pangolin biology and evolution, we developed genome assemblies of the Malayan (Manis javanica) and Chinese (M. pentadactyla) pangolins. Strikingly, we found that interferon epsilon (IFNE), exclusively expressed in epithelial cells and important in skin and mucosal immunity, is pseudogenized in all African and Asian pangolin species that we examined, perhaps impacting resistance to infection. We propose that scale development was an innovation that provided protection against injuries or stress and reduced pangolin vulnerability to infection. Further evidence of specialized adaptations was evident from positively selected genes involving immunity-related pathways, inflammation, energy storage and metabolism, muscular and nervous systems, and scale/hair development. Olfactory receptor gene families are significantly expanded in pangolins, reflecting their well-developed olfaction system. This study provides insights into mammalian adaptation and functional diversification, new research tools and questions, and perhaps a new natural IFNE-deficient animal model for studying mammalian immunity.
    Matched MeSH terms: Mammals/anatomy & histology; Mammals/classification; Mammals/genetics*; Mammals/immunology
  15. Alroy J
    Ecology, 2015 Feb;96(2):575-86.
    PMID: 26240877
    Pairwise similarity coefficients are downward biased when samples only record presences and sampling is partial. A simple but forgotten index proposed by Stephen Forbes in 1907 can help solve this problem. His original equation requires knowing the number of species absent in both samples that could have been present. It is proposed that this count should simply be ignored and that the coefficient should be adjusted using a simple heuristic correction. Four analyses show that the corrected equation outperforms the Dice and Simpson indices, which are highly correlated with many others. In two-sample simulations, similarity is almost always closer to the assumed value when the species pool size and sampling intensity are varied, regardless of whether the underlying abundance distribution is uniform, log-normal, or geometric. The index is also much more robust when sampling is unequal. An analysis of bat samples from peninsular Malaysia buttresses these conclusions. The corrected coefficient also indicates that local assemblages of North American mammals are random subsamples of larger species pools by returning similarity of values of around 1, and it suggests a more consistent relationship between biome-scale comparisons and local-scale comparisons. Finally, it yields a better-dispersed pattern when the biome-scale inventories are ordinated. If these results are generalizable, then the new and old equation should see wide application, potentially taking the place of the two most commonly used alternatives (the interrelated Dice and Jaccard indices) whenever sampling is incomplete.
    Matched MeSH terms: Mammals/physiology*
  16. Brodie JF, Strimas-Mackey M, Mohd-Azlan J, Granados A, Bernard H, Giordano AJ, et al.
    Proc Biol Sci, 2017 01 25;284(1847).
    PMID: 28100818 DOI: 10.1098/rspb.2016.2335
    The responses of lowland tropical communities to climate change will critically influence global biodiversity but remain poorly understood. If species in these systems are unable to tolerate warming, the communities-currently the most diverse on Earth-may become depauperate ('biotic attrition'). In response to temperature changes, animals can adjust their distribution in space or their activity in time, but these two components of the niche are seldom considered together. We assessed the spatio-temporal niches of rainforest mammal species in Borneo across gradients in elevation and temperature. Most species are not predicted to experience changes in spatio-temporal niche availability, even under pessimistic warming scenarios. Responses to temperature are not predictable by phylogeny but do appear to be trait-based, being much more variable in smaller-bodied taxa. General circulation models and weather station data suggest unprecedentedly high midday temperatures later in the century; predicted responses to this warming among small-bodied species range from 9% losses to 6% gains in spatio-temporal niche availability, while larger species have close to 0% predicted change. Body mass may therefore be a key ecological trait influencing the identity of climate change winners and losers. Mammal species composition will probably change in some areas as temperatures rise, but full-scale biotic attrition this century appears unlikely.
    Matched MeSH terms: Mammals*
  17. Tan HM, Low WY
    PLoS One, 2018;13(12):e0209336.
    PMID: 30586459 DOI: 10.1371/journal.pone.0209336
    Glutathione S-Transferases (GSTs) are phase II detoxification enzymes that may have evolved in response to changes of environmental substrates. GST genes formed a multigene family and in mammals, there are six classes known as Alpha, Mu, Omega, Pi, Theta, and Zeta. Recent studies in phase I detoxification system specifically the cytochrome P450s provided a general explanation on why genes from a common origin such as those in a multigene family have both phylogenetically stable and unstable genes. Genes that participate in core functions of organisms such as development and physiology are stable whereas genes that play a role in detoxification are unstable and evolve in a process known as birth-death evolution, which is characterised by frequent gene gains and losses. The generality of the birth-death model at explaining the evolution of detoxification enzymes beyond the phase I enzyme has not been comprehensively explored. This work utilized 383 Gst genes and 300 pseudogenes across 22 mammalian species to study gene gains and losses. GSTs vary greatly in their phylogenetic stability despite their overall sequence similarity. Stable Gst genes from Omega and Zeta classes do not show fluctuation in gene numbers from human to opossum. These genes play a role in biosynthesis related functions. Unstable genes that include Alpha, Mu, Pi and Theta undergo frequent gene gain and loss in a process known as birth-death evolution. Gene members of these four classes are well known for their roles in detoxification. Our positive selection screen identified five positively selected sites in mouse GSTA3. Previous studies showed two of these sites (108H and 208E) were biochemically tested as important residues that conferred catalytic activity against the toxic aflatoxin B1-8,9-epoxide. The functional significance against aflatoxin of the remaining three positively selected sites warrant further investigation.
    Matched MeSH terms: Mammals/genetics*
  18. Wearn OR, Carbone C, Rowcliffe JM, Bernard H, Ewers RM
    Ecol Appl, 2016 Jul;26(5):1409-1420.
    PMID: 27755763 DOI: 10.1890/15-1363
    Diversity responses to land-use change are poorly understood at local scales, hindering our ability to make forecasts and management recommendations at scales which are of practical relevance. A key barrier in this has been the underappreciation of grain-dependent diversity responses and the role that β-diversity (variation in community composition across space) plays in this. Decisions about the most effective spatial arrangement of conservation set-aside, for example high conservation value areas, have also neglected β-diversity, despite its role in determining the complementarity of sites. We examined local-scale mammalian species richness and β-diversity across old-growth forest, logged forest, and oil palm plantations in Borneo, using intensive camera- and live-trapping. For the first time, we were able to investigate diversity responses, as well as β-diversity, at multiple spatial grains, and across the whole terrestrial mammal community (large and small mammals); β-diversity was quantified by comparing observed β-diversity with that obtained under a null model, in order to control for sampling effects, and we refer to this as the β-diversity signal. Community responses to land use were grain dependent, with large mammals showing reduced richness in logged forest compared to old-growth forest at the grain of individual sampling points, but no change at the overall land-use level. Responses varied with species group, however, with small mammals increasing in richness at all grains in logged forest compared to old-growth forest. Both species groups were significantly depauperate in oil palm. Large mammal communities in old-growth forest became more heterogeneous at coarser spatial grains and small mammal communities became more homogeneous, while this pattern was reversed in logged forest. Both groups, however, showed a significant β-diversity signal at the finest grain in logged forest, likely due to logging-induced environmental heterogeneity. The β-diversity signal in oil palm was weak, but heterogeneity at the coarsest spatial grain was still evident, likely due to variation in landscape forest cover. Our findings suggest that the most effective spatial arrangement of set-aside will involve trade-offs between conserving large and small mammals. Greater consideration in the conservation and management of tropical landscapes needs to be given to β-diversity at a range of spatial grains.
    Matched MeSH terms: Mammals*
  19. Bain O, Shoho C
    Ann Parasitol Hum Comp, 1976 Jan-Feb;53(1):93-100.
    PMID: 677714
    Redescription of the female of Setaria thomasi Sandosham, 1954, parasite of Sus scrofa jubatus; description of the female of Papillosetaria malayi n.sp. from Tragulus javanicus. The study of the buccal region of Papillosteria leads the authors to consider this genus as an ancestral form of Setaria.
    Matched MeSH terms: Mammals/parasitology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links