Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Thio TH, Ibrahim F, Al-Faqheri W, Moebius J, Khalid NS, Soin N, et al.
    Lab Chip, 2013 Aug 21;13(16):3199-209.
    PMID: 23774994 DOI: 10.1039/c3lc00004d
    A technique known as thermo-pneumatic (TP) pumping is used to pump fluids on a microfluidic compact disc (CD) back towards the CD center against the centrifugal force that pushes liquids from the center to the perimeter of the disc. Trapped air expands in a TP air chamber during heating, and this creates positive pressure on liquids located in chambers connected to that chamber. While the TP air chamber and connecting channels are easy to fabricate in a one-level CD manufacturing technique, this approach provides only one way pumping between two chambers, is real-estate hungry and leads to unnecessary heating of liquids in close proximity to the TP chamber. In this paper, we present a novel TP push and pull pumping method which allows for pumping of liquid in any direction between two connected liquid chambers. To ensure that implementation of TP push and pull pumping also addresses the issue of space and heating challenges, a multi-level 3D CD design is developed, and localized forced convection heating, rather than infra-red (IR) is applied. On a multi-level 3D CD, the TP features are placed on a top level separate from the rest of the microfluidic processes that are implemented on a lower separate level. This approach allows for heat shielding of the microfluidic process level, and efficient usage of space on the CD for centrifugal handling of liquids. The use of localized forced convection heating, rather than infra-red (IR) or laser heating in earlier implementations allows not only for TP pumping of liquids while the CD is spinning but also makes heat insulation for TP pumping and other fluidic functions easier. To aid in future implementations of TP push and pull pumping on a multi-level 3D CD, study on CD surface heating is also presented. In this contribution, we also demonstrate an advanced application of pull pumping through the implementation of valve-less switch pumping.
    Matched MeSH terms: Mechanical Processes*
  2. Rubentheren V, Ward TA, Chee CY, Tang CK
    Carbohydr Polym, 2015 Jan 22;115:379-87.
    PMID: 25439908 DOI: 10.1016/j.carbpol.2014.09.007
    Chitosan film reinforced with nano-sized chitin whiskers and crosslinked using tannic acid was synthesized by the casting-vaporation method. The mechanical and physicochemical properties of several film samples (consisting of different ratio of chitin and tannic acid) were compared with neat chitosan. Tensile tests show that the addition of chitin improves the nanocomposite films mechanical properties up to 137% compared to neat chitosan, but this is slightly degraded when tannic acid is introduced. However, tannic acid and chitin whisker content greatly reduced moisture content by 294% and water solubility by 13%. Transmission electron microscopy (TEM) and Fourier-transform-infrared spectroscopy (FTIR) were used to investigate the morphology and molecular interaction of film. X-ray diffraction results indicated that the samples with chitin whiskers had a more rigid structure. The addition of tannic acid changed the structure into an anhydrous crystalline conformation when compared to neat chitosan film.
    Matched MeSH terms: Mechanical Processes*
  3. Panjehpour M, Chai HK, Voo YL
    ScientificWorldJournal, 2014;2014:265879.
    PMID: 25197698 DOI: 10.1155/2014/265879
    Strut-and-tie model (STM) method evolved as one of the most useful designs for shear critical structures and discontinuity regions (D-regions). It provides widespread applications in the design of deep beams as recommended by many codes. The estimation of bottle-shaped strut dimensions, as a main constituent of STM, is essential in design calculations. The application of carbon fibre reinforced polymer (CFRP) as lightweight material with high tensile strength for strengthening D-regions is currently on the increase. However, the CFRP-strengthening of deep beam complicates the dimensions estimation of bottle-shaped strut. Therefore, this research aimed to investigate the effect of CFRP-strengthening on the deformation of RC strut in the design of deep beams. Two groups of specimens comprising six unstrengthened and six CFRP-strengthened RC deep beams with the shear span to the effective depth ratios (a/d) of 0.75, 1.00, 1.25, 1.50, 1.75, and 2.00 were constructed in this research. These beams were tested under four-point bending configuration. The deformation of struts was experimentally evaluated using the values of strain along and perpendicular to the strut centreline. The evaluation was made by the comparisons between unstrengthened and CFRP-strengthened struts regarding the widening and shortening. The key variables were a/d ratio and applied load level.
    Matched MeSH terms: Mechanical Processes*
  4. Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S, Arifin N, Wan Abas WA
    Biomed Eng Online, 2014;13:1.
    PMID: 24410918 DOI: 10.1186/1475-925X-13-1
    Good prosthetic suspension system secures the residual limb inside the prosthetic socket and enables easy donning and doffing. This study aimed to introduce, evaluate and compare a newly designed prosthetic suspension system (HOLO) with the current suspension systems (suction, pin/lock and magnetic systems).
    Matched MeSH terms: Mechanical Processes*
  5. Sahari J, Sapuan SM, Zainudin ES, Maleque MA
    Carbohydr Polym, 2013 Feb 15;92(2):1711-6.
    PMID: 23399210 DOI: 10.1016/j.carbpol.2012.11.031
    In recent years, increasing environmental concerns focused greater attention on the development of biodegradable materials. A thermoplastic starch derived from bioresources, sugar palm tree was successfully developed in the presence of biodegradable glycerol as a plasticizer. Sugar palm starch (SPS) was added with 15-40 w/w% of glycerol to prepare workable bioplastics and coded as SPS/G15, SPS/G20, SPS/G30 and SPS/G40. The samples were characterized for thermal properties, mechanical properties and moisture absorption on exposure to humidity were evaluated. Morphological studies through scanning electron microscopy (SEM) were used to explain the observed mechanical properties. Generally, the addition of glycerol decrease the transition temperature of plasticized SPS. The mechanical properties of plasticized SPS increase with the increasing of glycerol but up to 30 w/w%. Meanwhile, the water absorption of plasticized SPS decrease with increasing of glycerol.
    Matched MeSH terms: Mechanical Processes*
  6. Hussain H. Al-Kayiem, Iylia Elena Abdul Jamil
    MyJurnal
    In the moving layer of particles with variable concentration, the shear estimation is not directly predictable and there is no existing clear mathematical or empirical formula to achieve this objective. This paper presents a developed approach to estimate the shear forces in a flow having suspended and moving layers of solid particles in liquid flow. The two-layer approach was taken whereby the flow consisting of one upper suspended layer of particles in the liquid, and the bottom layer was the moving bed of particles. In the present work, the method of finding the force acting on the pipe wall by the particles in the layer, termed as the ‘dry force’, was presented using a “pseudo hydrostatic pressure” method. To attain the equation for the dry force, a mathematical approach is taken with the assumptions that the flow is horizontal, two-phase pipe flow (solid in Newtonian liquid), incompressible and it is at steady-state. The analysis was conducted considering various particles densities, various concentrations in the suspended layer and different thicknesses of the moving bed. Changing the concentration in the suspended layer from 0.00001 up to 0.001 didn’t showed significant changes in the dry force evaluation. The dry friction force is increasing with increasing moving bed thickness. The developed mathematical model can be
    applicable in solving for the shear force in horizontal solid liquid two-phase flows.
    Matched MeSH terms: Mechanical Processes
  7. Abbas, F.M.A., Saifullah, R., Azhar, M.E.
    MyJurnal
    Physical properties of ripe banana flour were studied in Cavendish and Dream banana, in order to distinguish the two varieties. Flour was analyzed for pH, total soluble solids (TSS), water holding capacity
    (WHC) and oil holding capacity (OHC) at 40, 60 and 80 °C, color values L*, a* and b*, back extrusion force
    and viscosity. Physical properties data were analyzed by cluster analysis (CA) and discriminant analysis (DA). CA showed that the two types of flour were different in terms of selected physical properties. DA indicated that WHC at 60 °C was the main contributor in discriminating the two types of flour.
    Matched MeSH terms: Mechanical Processes
  8. Ahmad Rasdan Ismail, Mohd Afiq Zainal Rosli, Isa Halim, Baba Md. Deros, Mohd Nizam Ab Rahman, Md. Mustafizur Rahman
    MyJurnal
    The main purpose of this study was to establish the comfort zone for bus drivers in a seated position. In addition, this study is to investigate the seated pressure distribution among Malaysian bus drivers. The study consists of 10 bus drivers randomly selected to be a part of this study. The FSA pressure mat was utilized in order to investigate the force distribution of buttock to the seat pan of the drivers’ seat. This device is placed on the driver seat and backrest. Later, the subject would sit on for several minute. The finding reveals that most of the bus drivers feel discomfort by having low back pain and musculoskeletal disorder. The seat pressure distribution of Malaysian busses indicated that the seat not able to absorb high pressure generated from buttock that later may cause the discomfort and restricted the performance of drivers.
    Matched MeSH terms: Mechanical Processes
  9. Ahmad, D., Jamarei, O., Sulaiman, S., Fashina, A.B., Akande, F.B.
    MyJurnal
    The motion resistances of 660 mm pneumatic and rigid bicycle wheels of the same rim diameter were measured experimentally using the developed tractor-towed single non-lug narrow wheel motion resistance test rig for traction studies. The motion resistances measured were taken to be the towing forces determined in real time using Mecmesin Basic Force Gauge (BFG 2500). The test variables included two test surfaces [tilled and wet (mud) surfaces], the dynamic load and the towing velocity. The tyre inflation pressure of 414 kPa was chosen to make the surface synonymous with that of the rigid wheel. Motion resistance ratios of the two wheels were determined empirically and through semi-empirical approach. The motion resistances of the rigid wheel were found to be greater than those of the pneumatic wheel for both surfaces. Consequently, the motion resistance ratios of the rigid wheel were greater than those obtained
    from the pneumatic wheel. Analysis of variance showed that there were significant differences between the means of the motion resistance measured on the test surfaces, as well as between the two wheels and their interactions with the test surfaces. The motion resistance ratio exhibited a linear relationship with the towing velocity, while the relationship with the dynamic load was quadratic. However, such a relationship is either direct or inverse with the respective variables. The motion resistance ratio models for the pneumatic and rigid wheels showed that on different test conditions of the dynamic loads and the towing velocities, the relationships between the motion resistance ratio and the dynamic load, and motion resistance with dynamic load were also different.
    Matched MeSH terms: Mechanical Processes
  10. M.N.M. Nawi, A.A. Manaf, M.R. Arshad
    ASM Science Journal, 2013;7(2):144-151.
    MyJurnal
    This article uses finite volume and finite element methods for optimization of the artificial hair cell sensor. The performance of the sensor was investigated for different materials such as sicon and polysilicon and by varying hair cell dimensions including width and length. The silicon material which has low young modulus was proposed based on the simulation performance. The performance of the hair cell sensor was achieved by increasing the hair cell length while increasing the width did not significantly influence the performance. The
    performance of the sensor was studied for its viscous force, deflection, von mises stress and sensitivity. From the simulation, the hair cell with a length of 1600 µm and 80 µm width was suggested for the subsequent analysis. Another way to improve the performance was by modifying the hair cell geometry and it was proved that the modified hair cell was more sensitive, based on the deflection. The angle of flow that hit the hair cell also affected the deflection of the sensor where the zero angle flow which was parallel to the substrate was the most effective angle. The limitations of the performance of hair cell for various fluid velocity were also discussed in this paper.
    Matched MeSH terms: Mechanical Processes
  11. Shirazi FS, Mehrali M, Oshkour AA, Metselaar HS, Kadri NA, Abu Osman NA
    J Mech Behav Biomed Mater, 2014 Feb;30:168-75.
    PMID: 24316872 DOI: 10.1016/j.jmbbm.2013.10.024
    The focus of this study is to investigate the effect of Al2O3 on α-calcium silicate (α-CaSiO3) ceramic. α-CaSiO3 was synthesized from CaO and SiO2 using mechanochemical method followed by calcinations at 1000°C. α-CaSiO3 and alumina were grinded using ball mill to create mixtures, containing 0-50w% of Al2O3 loadings. The powders were uniaxially pressed and followed by cold isostatic pressing (CIP) in order to achieve greater uniformity of compaction and to increase the shape capability. Afterward, the compaction was sintered in a resistive element furnace at both 1150°C and 1250°C with a 5h holding time. It was found that alumina reacted with α-CaSiO3 and formed alumina-rich calcium aluminates after sintering. An addition of 15wt% of Al2O3 powder at 1250°C were found to improve the hardness and fracture toughness of the calcium silicate. It was also observed that the average grain sizes of α-CaSiO3 /Al2O3 composite were maintained 500-700nm after sintering process.
    Matched MeSH terms: Mechanical Processes*
  12. Sopyan I, Fadli A, Mel M
    J Mech Behav Biomed Mater, 2012 Apr;8:86-98.
    PMID: 22402156 DOI: 10.1016/j.jmbbm.2011.10.012
    This report presents physical characterization and cell culture test of porous alumina-hydroxyapatite (HA) composites fabricated through protein foaming-consolidation technique. Alumina and HA powders were mixed with yolk and starch at an adjusted ratio to make slurry. The resulting slip was poured into cylindrical shaped molds and followed by foaming and consolidation via 180 °C drying for 1 h. The obtained green bodies were burned at 600 °C for 1 h, followed by sintering at temperatures of 1200-1550 °C for 2 h. Porous alumina-HA bodies with 26-77 vol.% shrinkage, 46%-52% porosity and 0.1-6.4 MPa compressive strength were obtained. The compressive strength of bodies increased with the increasing sintering temperatures. The addition of commercial HA in the body was found to increase the compressive strength, whereas the case is reverse for sol-gel derived HA. Biocompatibility study of porous alumina-HA was performed in a stirred tank bioreactor using culture of Vero cells. A good compatibility of the cells to the porous microcarriers was observed as the cells attached and grew at the surface of microcarriers at 8-120 cultured hours. The cell growth on porous alumina microcarrier was 0.015 h(-1) and increased to 0.019 h(-1) for 0.3 w/w HA-to-alumina mass ratio and decreased again to 0.017 h(-1) for 1.0 w/w ratio.
    Matched MeSH terms: Mechanical Processes*
  13. Ataollahi Oshkour A, Pramanik S, Mehrali M, Yau YH, Tarlochan F, Abu Osman NA
    J Mech Behav Biomed Mater, 2015 Sep;49:321-31.
    PMID: 26072197 DOI: 10.1016/j.jmbbm.2015.05.020
    This study aimed to investigate the structural, physical and mechanical behavior of composites and functionally graded materials (FGMs) made of stainless steel (SS-316L)/hydroxyapatite (HA) and SS-316L/calcium silicate (CS) employing powder metallurgical solid state sintering. The structural analysis using X-ray diffraction showed that the sintering at high temperature led to the reaction between compounds of the SS-316L and HA, while SS-316L and CS remained intact during the sintering process in composites of SS-316L/CS. A dimensional expansion was found in the composites made of 40 and 50 wt% HA. The minimum shrinkage was emerged in 50 wt% CS composite, while the maximum shrinkage was revealed in samples with pure SS-316L, HA and CS. Compressive mechanical properties of SS-316L/HA decreased sharply with increasing of HA content up to 20 wt% and gradually with CS content up to 50 wt% for SS-316L/CS composites. The mechanical properties of the FGM of SS-316L/HA dropped with increase in temperature, while it was improved for the FGM of SS-316L/CS with temperature enhancement. It has been found that the FGMs emerged a better compressive mechanical properties compared to both the composite systems. Therefore, the SS-316L/CS composites and their FGMs have superior compressive mechanical properties to the SS-316L/HA composites and their FGMs and also the newly developed FGMs of SS-316L/CS with improved mechanical and enhanced gradation in physical and structural properties can potentially be utilized in the components with load-bearing application.
    Matched MeSH terms: Mechanical Processes*
  14. Ramlee MH, Kadir MR, Murali MR, Kamarul T
    Med Eng Phys, 2014 Oct;36(10):1322-30.
    PMID: 25127377 DOI: 10.1016/j.medengphy.2014.05.015
    Pilon fractures are commonly caused by high energy trauma and can result in long-term immobilization of patients. The use of an external fixator i.e. the (1) Delta, (2) Mitkovic or (3) Unilateral frame for treating type III pilon fractures is generally recommended by many experts owing to the stability provided by these constructs. This allows this type of fracture to heal quickly whilst permitting early mobilization. However, the stability of one fixator over the other has not been previously demonstrated. This study was conducted to determine the biomechanical stability of these external fixators in type III pilon fractures using finite element modelling. Three-dimensional models of the tibia, fibula, talus, calcaneus, navicular, cuboid, three cuneiforms and five metatarsal bones were reconstructed from previously obtained CT datasets. Bones were assigned with isotropic material properties, while the cartilage was assigned as hyperelastic springs with Mooney-Rivlin properties. Axial loads of 350 N and 70 N were applied at the tibia to simulate the stance and the swing phase of a gait cycle. To prevent rigid body motion, the calcaneus and metatarsals were fixed distally in all degrees of freedom. The results indicate that the model with the Delta frame produced the lowest relative micromovement (0.03 mm) compared to the Mitkovic (0.05 mm) and Unilateral (0.42 mm) fixators during the stance phase. The highest stress concentrations were found at the pin of the Unilateral external fixator (509.2 MPa) compared to the Mitkovic (286.0 MPa) and the Delta (266.7 MPa) frames. In conclusion, the Delta external fixator was found to be the most stable external fixator for treating type III pilon fractures.
    Matched MeSH terms: Mechanical Processes*
  15. Ramlee MH, Kadir MR, Murali MR, Kamarul T
    Med Eng Phys, 2014 Oct;36(10):1358-66.
    PMID: 25092623 DOI: 10.1016/j.medengphy.2014.07.001
    Subtalar dislocation is a rare injury caused by high-energy trauma. Current treatment strategies include leg casts, internal fixation and external fixation. Among these, external fixators are the most commonly used as this method is believed to provide better stabilization. However, the biomechanical stability provided by these fixators has not been demonstrated. This biomechanical study compares two commonly used external fixators, i.e. Mitkovic and Delta. CT imaging data were used to reconstruct three-dimensional models of the tibia, fibula, talus, calcaneus, navicular, cuboid, three cuneiforms and five metatarsal bones. The 3D models of the bones and cartilages were then converted into four-noded linear tetrahedral elements, whilst the ligaments were modelled with linear spring elements. Bones and cartilage were idealized as homogeneous, isotropic and linear. To simulate loading during walking, axial loading (70 N during the swing and 350 N during the stance phase) was applied at the end of diaphyseal tibia. The results demonstrate that the Mitkovic fixator produced greater displacement (peak 3.0mm and 15.6mm) compared to the Delta fixator (peak 0.8mm and 3.9 mm), in both the swing and stance phase, respectively. This study demonstrates that the Delta external fixator provides superior stability over the Mitkovic fixator. The Delta fixator may be more effective in treating subtalar dislocation.
    Matched MeSH terms: Mechanical Processes*
  16. Bajuri MN, Kadir MR, Raman MM, Kamarul T
    Med Eng Phys, 2012 Nov;34(9):1294-302.
    PMID: 22277308 DOI: 10.1016/j.medengphy.2011.12.020
    Understanding the pathomechanics involved in rheumatoid arthritis (RA) of the wrist provides valuable information, which will invariably allow various therapeutic possibilities to be explored. The computational modelling of this disease permits the appropriate simulation to be conducted seamlessly. A study that underpins the fundamental concept that produces the biomechanical changes in a rheumatoid wrist was thus conducted through the use of finite element method. The RA model was constructed from computed tomography datasets, taking into account three major characteristics: synovial proliferation, cartilage destruction and ligamentous laxity. As control, a healthy wrist joint model was developed in parallel and compared. Cartilage was modelled based on the shape of the articulation while the ligaments were modelled with linear spring elements. A load-controlled analysis was performed simulating physiological hand grip loading conditions. The results demonstrated that the diseased model produced abnormal wrist extension and stress distribution as compared to the healthy wrist model. Due to the weakening of the ligaments, destruction of the cartilage and lower bone density, the altered biomechanical stresses were particularly evident at the radioscaphoid and capitolunate articulations which correlate to clinical findings. These results demonstrate the robust finding of the developed RA wrist model, which accurately predicted the pathological process.
    Matched MeSH terms: Mechanical Processes*
  17. Haafiz MK, Hassan A, Zakaria Z, Inuwa IM, Islam MS, Jawaid M
    Carbohydr Polym, 2013 Oct 15;98(1):139-45.
    PMID: 23987327 DOI: 10.1016/j.carbpol.2013.05.069
    In this work, polylactic acid (PLA) composites filled with microcrystalline cellulose (MCC) from oil palm biomass were successfully prepared through solution casting. Fourier transform infrared (FT-IR) spectroscopy indicates that there are no significant changes in the peak positions, suggesting that incorporation of MCC in PLA did not result in any significant change in chemical structure of PLA. Thermogravimetric analysis was conducted on the samples. The T50 decomposition temperature improved with addition of MCC, showing increase in thermal stability of the composites. The synthesized composites were characterized in terms of tensile properties. The Young's modulus increased by about 30%, while the tensile strength and elongation at break for composites decreased with addition of MCC. Scanning electron microscopy (SEM) of the composites fractured surface shows that the MCC remained as aggregates of crystalline cellulose. Atomic force microscopy (AFM) topographic image of the composite surfaces show clustering of MCC with uneven distribution.
    Matched MeSH terms: Mechanical Processes
  18. Noordin MY, Jiawkok N, Ndaruhadi PY, Kurniawan D
    Proc Inst Mech Eng H, 2015 Nov;229(11):761-8.
    PMID: 26399875 DOI: 10.1177/0954411915606169
    There are millions of orthopedic surgeries and dental implantation procedures performed every year globally. Most of them involve machining of bones and cartilage. However, theoretical and analytical study on bone machining is lagging behind its practice and implementation. This study views bone machining as a machining process with bovine bone as the workpiece material. Turning process which makes the basis of the actually used drilling process was experimented. The focus is on evaluating the effects of three machining parameters, that is, cutting speed, feed, and depth of cut, to machining responses, that is, cutting forces and surface roughness resulted by the turning process. Response surface methodology was used to quantify the relation between the machining parameters and the machining responses. The turning process was done at various cutting speeds (29-156 m/min), depths of cut (0.03 -0.37 mm), and feeds (0.023-0.11 mm/rev). Empirical models of the resulted cutting force and surface roughness as the functions of cutting speed, depth of cut, and feed were developed. Observation using the developed empirical models found that within the range of machining parameters evaluated, the most influential machining parameter to the cutting force is depth of cut, followed by feed and cutting speed. The lowest cutting force was obtained at the lowest cutting speed, lowest depth of cut, and highest feed setting. For surface roughness, feed is the most significant machining condition, followed by cutting speed, and with depth of cut showed no effect. The finest surface finish was obtained at the lowest cutting speed and feed setting.
    Matched MeSH terms: Mechanical Processes
  19. Muhammad Rawi Mohamed Zin, Mahendrasingam, Arumugam, Konkel, Chris, Narayanan, Theyencheri
    MyJurnal
    Changes in molecular structure configuration during strain induced crystallisation of an amorphous Poly(Lactic Acid) (PLA 4032D) polymer was monitored in-situ by simultaneously recording the wide angle x-ray scattering (WAXS) and small angle x-ray scattering (SAXS) patterns together with polymer deformation images and force data. The amorphous chain orientation from the beginning of deformation until the onset of crystallisation was studied from the WAXS patterns. The true mechanical behaviour described by the true stress-true strain curve related to an amorphous chain orientation exhibited a linear behaviour. Approaching critical amorphous orientation, the true stress-true strain curve deviated from linear into non-linear behaviour. After the onset of crystallization, when the deformed polymer became a semicrystalline state, the true mechanical behaviour exhibited true strain hardening which greatly affected by the formation of the morphology. The gradual true strain hardening was associated with the formation of micro-fibrillar structure containing thin crystallite morphology whilst sharp increased in true strain hardening was associated with the formation of stacked lamellar morphology in the form of macro-lattice structure. The study was accomplished by the application of high brilliance synchrotron radiation at beamline ID2 of ESRF, Grenoble in France and the usage of the high contrast resolution of WAXS and SAXS charge-couple device (CCD) camera as well as 40 milliseconds temporal resolution of data acquisition system.
    Matched MeSH terms: Mechanical Processes
  20. Tham LK, Osman NA, Lim KS, Pingguan-Murphy B, Abas WA, Zain NM
    Med Eng Phys, 2011 May;33(4):407-10.
    PMID: 21146440 DOI: 10.1016/j.medengphy.2010.11.002
    The investigation of patellar tendon reflex involves development of a reflex hammer holder, kinematic data collection and analysis of patellar reflex responses using motion analysis techniques. The main aim of this research is to explore alternative means of assessing reflexes as a part of routine clinical diagnosis. The motion analysis system was applied to provide quantitative data which is a more objective measure of the patellar tendon reflex. Kinematic data was collected from 28 males and 22 females whilst subjected to a knee jerk test. Further analysis of kinematic data was performed to predict relationships which might affect the patellar tendon reflex. All subjects were seated on a high stool with their legs hanging freely within the capture volume of the motion analysis system. Knee jerk tests were applied to all subjects, on both sides of the leg, by eliciting hypo, hyper, and normal reflexes. An additional reinforcement technique called the Jendrassik manoeuvre was also performed under the same conditions to elicit a normal patellar tendon reflex. The comparison of reflex response between genders showed that female subjects generally had a greater response compared to males. However, the difference in reflex response between the left leg and the right leg was not significant. Tapping strength to elicit a hyper-reflex produced greater knee-jerk compared to the normal clinical tapping strength. All results were in agreement with clinical findings and results found by some early researchers.
    Matched MeSH terms: Mechanical Processes
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links