Displaying all 12 publications

Abstract:
Sort:
  1. Amin MM, Taheri E, Bina B, van Ginkel SW, Ghasemian M, Puad NIM, et al.
    J Environ Manage, 2019 Nov 15;250:109461.
    PMID: 31499462 DOI: 10.1016/j.jenvman.2019.109461
    Mixed culture sludge has been widely used as a microbial consortium for biohydrogen production. Simple thermal treatment of sludge is usually required in order to eliminate any H2-consuming bacteria that would reduce H2 production. In this study, thermal treatment of sludge was carried out at various temperatures. Electron flow model was then applied in order to assess community structure in the sludge upon thermal treatment for biohydrogen production. Results show that the dominant electron sink was acetate (150-217 e- meq/mol glucose). The electron equivalent (e- eq) balances were within 0.8-18% for all experiments. Treatment at 100 °C attained the highest H2 yield of 3.44 mol H2/mol glucose from the stoichiometric reaction. As the treatment temperature increased from 80 to 100 °C, the computed acetyl-CoA and reduced form of ferredoxin (Fdred) concentrations increased from 13.01 to 17.34 e- eq (1.63-2.17 mol) and 1.34 to 4.18 e- eq (0.67-2.09 mol), respectively. The NADH2 balance error varied from 3 to 10% and the term e-(Fd↔NADH2) (m) in the NADH2 balance was NADH2 consumption (m = -1). The H2 production was mainly via the Fd:hydrogenase system and this is supported with a good NADH2 balance. Using the modified Gompertz model, the highest maximum H2 production potential was 1194 mL whereas the maximum rate of H2 production was 357 mL/h recorded at 100 °C of treatment.
    Matched MeSH terms: Microbial Consortia
  2. Pradhoshini KP, Santhanabharathi B, Priyadharshini M, Ahmed MS, Murugan K, Sivaperumal P, et al.
    Environ Res, 2024 Mar 01;244:118000.
    PMID: 38128601 DOI: 10.1016/j.envres.2023.118000
    The present investigation is the first of its kind which aims to study the characteristics of microbial consortium inhabiting one of the natural high background radiation areas of the world, Chavara Coast in Kerala, India. The composition of the microbial community and their structural changes were evaluated under the natural circumstances with exorbitant presence of radionuclides in the sediments and after the radionuclide's recession due to mining effects. For this purpose, the concentration of radionuclides, heavy metals, net radioactivity estimation via gross alpha and beta emitters and other physiochemical characteristics were assessed in the sediments throughout the estuarine stretch. According to the results, the radionuclides had a significant effect in shaping the community structure and composition, as confirmed by the bacterial heterogeneity achieved between the samples. The results indicate that high radioactivity in the background environment reduced the abundance and growth of normal microbial fauna and favoured only the growth of certain extremophiles belonging to families of Piscirickettsiacea, Rhodobacteriacea and Thermodesulfovibrionaceae, which were able to tolerate and adapt towards the ionizing radiation present in the environment. In contrast, communities from Comamondacea, Sphingomonadacea, Moraxellacea and Erythrobacteracea were present in the sediments collected from industrial outlet, reinforcing the potent role of radionuclides in governing the community pattern of microbes present in the natural environment. The study confirms the presence of these novel and unidentified bacterial communities and further opens the possibility of utilizing their usefulness in future prospects.
    Matched MeSH terms: Microbial Consortia
  3. Aziz A, Agamuthu P, Alaribe FO, Fauziah SH
    Environ Technol, 2018 Feb;39(4):527-535.
    PMID: 28281885 DOI: 10.1080/09593330.2017.1305455
    Benzo[a]pyrene is a high-molecular-weight polycyclic aromatic hydrocarbon highly recalcitrant in nature and thus harms the ecosystem and/or human health. Therefore, its removal from the marine environment is crucial. This research focuses on benzo[a]pyrene degradation by using enriched bacterial isolates in consortium under saline conditions. Bacterial isolates capable of using benzo[a]pyrene as sole source of carbon and energy were isolated from enriched mangrove sediment. These isolates were identified as Ochrobactrum anthropi, Stenotrophomonas acidaminiphila, and Aeromonas salmonicida ss salmonicida. Isolated O. anthropi and S. acidaminiphila degraded 26% and 20%, respectively, of an initial benzo[a]pyrene concentration of 20 mg/L after 8 days of incubation in seawater (28 ppm of NaCl). Meanwhile, the bacterial consortium decomposed 41% of an initial 50 mg/L benzo[a]pyrene concentration after 8 days of incubation in seawater (28 ppm of NaCl). The degradation efficiency of benzo[a]pyrene increased to 54%, when phenanthrene was supplemented as a co-metabolic substrate. The order of biodegradation rate by temperature was 30°C > 25°C > 35°C. Our results suggest that co-metabolism by the consortium could be a promising biodegradation strategy for benzo[a]pyrene in seawater.
    Matched MeSH terms: Microbial Consortia*
  4. Li B, Huang W, Zhang C, Feng S, Zhang Z, Lei Z, et al.
    Bioresour Technol, 2015;187:214-220.
    PMID: 25855527 DOI: 10.1016/j.biortech.2015.03.118
    The influence of TiO2 nanoparticles (TiO2-NPs) (10-50mg/L) on aerobic granulation of algal-bacterial symbiosis system was investigated by using two identical sequencing batch reactors (SBRs). Although little adverse effect was observed on their nitritation efficiency (98-100% in both reactors), algal-bacterial granules in the control SBR (Rc) gradually lost stability mainly brought about by algae growth. TiO2-NPs addition to RT was found to enhance the granulation process achieving stable and compact algal-bacterial granules with remarkably improved nitratation thus little nitrite accumulation in RT when influent TiO2-NPs⩾30mg/L. Despite almost similar organics and phosphorus removals obtained in both reactors, the stably high nitratation efficiency in addition to much stable granular structure in RT suggests that TiO2-NPs addition might be a promising remedy for the long-term operation of algal-bacterial granular system, most probably attributable to the stimulated excretion of extracellular polymeric substances and less filamentous TM7.
    Matched MeSH terms: Microbial Consortia/drug effects; Microbial Consortia/physiology*
  5. Hendriksen RS, Munk P, Njage P, van Bunnik B, McNally L, Lukjancenko O, et al.
    Nat Commun, 2019 03 08;10(1):1124.
    PMID: 30850636 DOI: 10.1038/s41467-019-08853-3
    Antimicrobial resistance (AMR) is a serious threat to global public health, but obtaining representative data on AMR for healthy human populations is difficult. Here, we use metagenomic analysis of untreated sewage to characterize the bacterial resistome from 79 sites in 60 countries. We find systematic differences in abundance and diversity of AMR genes between Europe/North-America/Oceania and Africa/Asia/South-America. Antimicrobial use data and bacterial taxonomy only explains a minor part of the AMR variation that we observe. We find no evidence for cross-selection between antimicrobial classes, or for effect of air travel between sites. However, AMR gene abundance strongly correlates with socio-economic, health and environmental factors, which we use to predict AMR gene abundances in all countries in the world. Our findings suggest that global AMR gene diversity and abundance vary by region, and that improving sanitation and health could potentially limit the global burden of AMR. We propose metagenomic analysis of sewage as an ethically acceptable and economically feasible approach for continuous global surveillance and prediction of AMR.
    Matched MeSH terms: Microbial Consortia/drug effects; Microbial Consortia/genetics
  6. Ainon Hamzah, Siti Nursyazana Md Salleh, Sukiman Sarmani
    Sains Malaysiana, 2014;43:1327-1332.
    Bioremediation of crude oil using biostimulation and/or bioaugmentation was done by simulation study in the green house under uncontrolled environment temperature. In this study, the soil with indigenous microbes was spiked with Tapis crude oil at 200 g/kg. The microbial density of the amended soils was augmented by addition of fresh inoculum of microbial consortium which consist of Pseudomonas aeruginosa UKMP-14T, Acinetobacter baumannii UKMP-12T and seed culture two strains of fungi, Trichoderma virens UKMP-1M and Trichoderma virens UKMP-2M at ratio 1:1:1:1 (v/w). The amendment soil was added with 20% (v/w) of standardize consortium inoculum, 20% (w/w) of dried empty fruit bunch (EFB) and the effect of EFB was compared with 0.7% commercial fertilizer (v/w) which contain NPK (8:8:1). Soil with indigenous microbes was used as a control. Results showed total petroleum hydrocarbon (TPH) degradation for treatment added with NPK fertilizer was 70.36%, addition with EFB bulking agent 68.86% and addition of both NPK and EFB was 100% at day 30 of incubation. The control plot, 62% of TPH degradation was achieved after 30 days incubation.
    Matched MeSH terms: Microbial Consortia
  7. Zarkasi KZ, Abell GC, Taylor RS, Neuman C, Hatje E, Tamplin ML, et al.
    J Appl Microbiol, 2014 Jul;117(1):18-27.
    PMID: 24698479 DOI: 10.1111/jam.12514
    The relationship of Atlantic salmon gastrointestinal (GI) tract bacteria to environmental factors, in particular water temperature within a commercial mariculture system, was investigated.
    Matched MeSH terms: Microbial Consortia/genetics
  8. Watts MP, Spurr LP, Gan HM, Moreau JW
    Appl Microbiol Biotechnol, 2017 Jul;101(14):5889-5901.
    PMID: 28510801 DOI: 10.1007/s00253-017-8313-6
    Thiocyanate (SCN-) forms as a by-product of cyanidation during gold ore processing and can be degraded by a variety of microorganisms utilizing it as an energy, nitrogen, sulphur and/or carbon source. In complex consortia inhabiting bioreactor systems, a range of metabolisms are sustained by SCN- degradation; however, despite the addition or presence of labile carbon sources in most bioreactor designs to date, autotrophic bacteria have been found to dominate key metabolic functions. In this study, we cultured an autotrophic SCN--degrading consortium directly from gold mine tailings. In a batch-mode bioreactor experiment, this consortium degraded 22 mM SCN-, accumulating ammonium (NH4+) and sulphate (SO42-) as the major end products. The consortium consisted of a diverse microbial community comprised of chemolithoautotrophic members, and despite the absence of an added organic carbon substrate, a significant population of heterotrophic bacteria. The role of eukaryotes in bioreactor systems is often poorly understood; however, we found their 18S rRNA genes to be most closely related to sequences from bacterivorous Amoebozoa. Through combined chemical and phylogenetic analyses, we were able to infer roles for key microbial consortium members during SCN- biodegradation. This study provides a basis for understanding the behaviour of a SCN- degrading bioreactor under autotrophic conditions, an anticipated approach to remediating SCN- at contemporary gold mines.
    Matched MeSH terms: Microbial Consortia/physiology*
  9. Mohd-Nor D, Ramli N, Sharuddin SS, Hassan MA, Mustapha NA, Ariffin H, et al.
    Microbes Environ, 2019 Jun 27;34(2):121-128.
    PMID: 30905894 DOI: 10.1264/jsme2.ME18104
    Despite efforts to address the composition of the microbial community during the anaerobic treatment of palm oil mill effluent (POME), its composition in relation to biodegradation in the full-scale treatment system has not yet been extensively examined. Therefore, a thorough analysis of bacterial and archaeal communities was performed in the present study using MiSeq sequencing at the different stages of the POME treatment, which comprised anaerobic as well as facultative anaerobic and aerobic processes, including the mixed raw effluent (MRE), mixing pond, holding tank, and final discharge phases. Based on the results obtained, the following biodegradation processes were suggested to occur at the different treatment stages: (1) Lactobacillaceae (35.9%) dominated the first stage, which contributed to high lactic acid production; (2) the higher population of Clostridiaceae in the mixing pond (47.7%) and Prevotellaceae in the holding tank (49.7%) promoted acetic acid production; (3) the aceticlastic methanogen Methanosaetaceae (0.6-0.8%) played a role in acetic acid degradation in the open digester and closed reactor for methane generation; (4) Syntrophomonas (21.5-29.2%) appeared to be involved in the degradation of fatty acids and acetic acid by syntrophic cooperation with the hydrogenotrophic methanogen, Methanobacteriaceae (0.6-1.3%); and (5) the phenols and alcohols detected in the early phases, but not in the final discharge phase, indicated the successful degradation of lignocellulosic materials. The present results contribute to a better understanding of the biodegradation mechanisms involved in the different stages of the full-scale treatment of POME.
    Matched MeSH terms: Microbial Consortia*
  10. Rahman Jamal
    MyJurnal
    Colorectal cancer (CRC) is an important health problem that is on the rise globally, where it is the fourth most com-mon cause of deaths from cancer. CRC is now the 2nd commonest cancer in men and 3rd commonest in women in Malaysia. Diet, lifestyle, genetics and environmental interaction, together with underlying gut conditions such as inflammatory bowel disease have been reported to contribute to the disease. In addition, the gut microbiome has also been increasingly reported to be associated with CRC development, with dysbiosis of the commensal bacteria ob-served in CRC patients. Bacterial genera such as Bacteroides, Fusobacterium and Prevotella are more commonly de-tected in CRC patients compared to healthy individuals. Nevertheless, not much is known about the gut microbiome among Malaysians with different ethnicities. In Malaysia, the Chinese has the highest incidence of CRC, followed by Malays and Indians. The reason behind this difference may be contributed by the differences in the dietary intake that could modulate the gut microbiome and contribute towards the development of CRC. The current knowledge on this field still much depends on reports from individuals of American, European, Chinese, Brazilian and Japanese descendants in origin. The oncogenic potential of bacteria was suggested to include inflammation and the produc-tion of mutagenic toxin. A significant increase in certain intestinal microbiota including the genuses Enteroccus and Streptococcus spp. was detected in the advanced stage of colorectal adenoma. However, there are discrepancies in the previous studies, where some bacteria genera might be over-reported or underestimated. It is likely that the gut microbiome differs between populations. There is also no available data on the gut microbiome of the healthy individuals, colorectal adenoma (pre-cancerous) and colorectal cancer patients in the Malaysian population. Recent advancements in next generation sequencing allow faster and more accurate determination of microbial consortium in various niches of the human body and environment. In particular, sequencing of the 16S rRNA gene with specific primers have been reported to allow accurate determination of bacterial orders commonly found in the human gut as well as for those which are not expected in the digestive system. Recent developments in gut microbiome DNA ex-traction also contributed to the robustness of gut microbiome determination and analysis. All the above will contrib-ute towards an accurate and rapid cataloging process of the Malaysian gut microbiome and also enable comparison between healthy individuals, colorectal adenoma and CRC patients of the Malaysian population.
    Matched MeSH terms: Microbial Consortia
  11. Wong CKF, Saidi NB, Vadamalai G, Teh CY, Zulperi D
    J Appl Microbiol, 2019 Aug;127(2):544-555.
    PMID: 31077517 DOI: 10.1111/jam.14310
    AIMS: This study sought to investigate the effect of bioformulation on the biocontrol efficacy, microbial viability and storage stability of a consortium of Pseudomonas aeruginosa DRB1 and Trichoderma harzianum CBF2 against Foc Tropical Race 4 (Foc-TR4).

    MATERIALS AND RESULTS: Four bioformulations consisting of dry (pesta granules, talc powder and alginate beads) and liquid formulations were evaluated for their ability to control Foc-TR4, sustain microbial populations after application and maintain microbial stability during storage. All tested bioformulations reduced disease severity (DS) by more than 43·00% with pesta granules producing the highest reduction in DS by 66·67% and the lowest area under the disease progress curve value (468·75) in a glasshouse trial. Microbial populations of DRB1 and CBF2 were abundant in the rhizosphere, rhizoplane and within the roots of bananas after pesta granules application as compared to talc powder, alginate beads and liquid formulations 84 days after inoculation (DAI). The stability of both microbial populations after 180 days of storage at 4°C was the greatest in the pesta granule formulation.

    CONCLUSION: The pesta granule formulation was a suitable carrier of biological control agents (BCA) without compromising biocontrol efficacy, microbial population and storage stability as compared to other bioformulations used in this study.

    SIGNIFICANCE AND IMPACT OF THE STUDY: Pesta granules could be utilized to formulate BCA consortia into biofertilizers. This formulation could be further investigated for possible applications under agricultural field settings.

    Matched MeSH terms: Microbial Consortia
  12. Karam DS, Arifin A, Radziah O, Shamshuddin J, Majid NM, Hazandy AH, et al.
    ScientificWorldJournal, 2012;2012:641346.
    PMID: 22606055 DOI: 10.1100/2012/641346
    Deforestation leads to the deterioration of soil fertility which occurs rapidly under tropical climates. Forest rehabilitation is one of the approaches to restore soil fertility and increase the productivity of degraded areas. The objective of this study was to evaluate and compare soil biological properties under enrichment planting and secondary forests at Tapah Hill Forest Reserve, Perak after 42 years of planting. Both areas were excessively logged in the 1950s and left idle without any appropriate forest management until 1968 when rehabilitation program was initiated. Six subplots (20 m × 20 m) were established within each enrichment planting (F1) and secondary forest (F2) plots, after which soil was sampled at depths of 0-15 cm (topsoil) and 15-30 cm (subsoil). Results showed that total mean microbial enzymatic activity, as well as biomass C and N content, was significantly higher in F1 compared to F2. The results, despite sample variability, suggest that the rehabilitation program improves the soil biological activities where high rate of soil organic matter, organic C, N, suitable soil acidity range, and abundance of forest litter is believed to be the predisposing factor promoting higher population of microbial in F1 as compared to F2. In conclusion total microbial enzymatic activity, biomass C and biomass N evaluation were higher in enrichment planting plot compared to secondary forest. After 42 years of planting, rehabilitation or enrichment planting helps to restore the productivity of planted forest in terms of biological parameters.
    Matched MeSH terms: Microbial Consortia
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links